-
-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathring.cxx
851 lines (676 loc) · 26.9 KB
/
ring.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
#include <cstdint>
#include <iostream>
#include <tuple>
#include <string>
// SYNOPSIS
//
// We define data structures which form finite commuitative rings with
//
// * addition, negation, subtraction and multiplication as usual
// * integer division and modulus
// * total ordering
// * single machine word representation
//
// We start with N<n> which is a subrange of integers 0..n-1
//
// We then define products (tuples) with arithmetic componentwise
// and lexicographical total ordering and provide projection functions
// to extract components,
//
// and sums (variants) with injection functions to construct them
// decoding a sum can be expensive: a reference linear decoding
// is provided and for small sums constant time decoding can
// be done with an array the size of the sum
//
// Total ordering is defined lexicographically as for products
//
// Arithmetic is defined as if the rings with packed next to each other,
// For example N<n> + N<m> is treated as if it were N<n+m>.
//
// clang bugs!!
// consteval strangely fails calling size() in succ and pred everywhere for no good reason at all
// it works everywhere else
//https://stackoverflow.com/questions/63364918/clang-says-call-to-void-consteval-function-is-not-a-constant-expression
#define consteval constexpr
// default spaceship operator<=> doesn't work in clang
// so we're forced to hand define all 6 comparisons every time
using Nat = ::std::uint64_t;
constexpr Nat maxrep = Nat(uint32_t(-1));
// These templates map a template with a name X to a call of a method named X
// This is required to pass the operation as a template template argument
// so as to avoid any run time overhead in higher order polymorphic functions
namespace helper {
template<class T>
struct add { static T op(T x, T y) { return x.add(y); }};
template<class T>
struct sub { static T op(T x, T y) { return x.sub(y); }};
template<class T>
struct mul { static T op(T x, T y) { return x.mul(y); }};
template<class T>
struct div { static T op(T x, T y) { return x.div(y); }};
template<class T>
struct mod { static T op(T x, T y) { return x.mod(y); }};
template<class T>
struct neg { static T op(T x) { return x.neg(); }};
}
// The most basic rings N<n> are subranges of the natural
// numbers (unsigned integers) from 0 to n-1
// All the operations are purely functional.
// The representation is uint64_t and the value of n is constrained
// to be at most the maximum value of uint32_t to ensure multiplication
// does not overflow
//
// FIXME: N<0> and N<1> are special cases and should be
// handled specially
//
// N0 is the empty range, it has no values, and so no
// operations requiring values are permitted: it has size 0
//
// N1 has only one value, namely 0, and so as an optimisation
// does not require a representation
//
// Addition, subtraction and multiplication are well defined
// However division and modulus necessarily fail for all RHS values
// since the only value is 0 so these should throw a division by zero
// exception!
//
// For all n, division and modulus by zero also fail
// These should throw division by zero exception,
// At present, we rely on the standard division by zero exception to be thrown
//
template<Nat n> requires (n <= maxrep)
class N {
Nat rep; // probably should be const ..
public:
static ::std::string type_name() { return "N<"+::std::to_string(n)+">"; }
Nat get() const { return rep; }
// default constructor
N() : rep(0) {}
// constructor
N(uint64_t x) : rep(x%n) {}
// standard value semantics
N(N const&) = default;
N(N const&&) = default;
N& operator=(N const&) = default;
N& operator=(N const&&) = default;
// number of values
static consteval Nat size() { return n; }
// operations, note modulo performed by constructor
constexpr N add(N x) const { return rep + x.rep; }
constexpr N neg() const { return n - rep; }
constexpr N sub(N x) const { return rep - x.rep + n; }
constexpr N mul(N x) const { return rep * x.rep; }
constexpr N div (N x) const { return rep / x.rep; }
constexpr N mod(N x) const { return rep % x.rep; }
// comparisons
constexpr bool eq( N x) const { return x.rep == rep; }
constexpr bool lt( N x) const { return x.rep < rep; }
constexpr bool le( N x) const { return x.rep <= rep; }
constexpr bool ge( N x) const { return x.rep >= rep; }
constexpr bool gt( N x) const { return x.rep > rep; }
constexpr bool ne( N x) const { return x.rep != rep; }
// iterators
constexpr N succ () const { return rep + 1; }
constexpr N pred () const { return rep + n - 1; }
consteval static N zero() { return 0; }
// oputput
friend constexpr ::std::ostream &
operator<<(::std::ostream &o, N x) { return o << x.rep << ":" << n; }
::std::string repr() const { return type_name() + "{" + ::std::to_string (get()) + "}"; }
};
template<class T>
struct ring_iterator {
T v;
bool ended;
ring_iterator() : v{T::zero()}, ended(false) {}
ring_iterator(int) : v{T::zero()}, ended(true) {} // dummy parameter
T operator*(){ return v; }
void operator++() { v = v.succ(); ended = v==T::zero(); }
friend int operator <=>(ring_iterator<T>,ring_iterator<T>)=default;
static ring_iterator begin() { return ring_iterator(); }
static ring_iterator end() { return ring_iterator(0); }
struct all {
all() {}
ring_iterator begin() { return ring_iterator::begin(); }
ring_iterator end() { return ring_iterator::end(); }
};
};
//---------------------------------------
// products
template<class...>
struct Product;
// Sums
template<class...>
struct Sum;
namespace helper {
// PROJECTIONS
template <Nat j, class ...T>
struct pack_prj;
// recursive case
template<Nat j, class H, class ...T>
struct pack_prj <j,H,T...> {
static Nat prj( Nat x) {
if (j == 0) return x / Product<T...>::size() % Product<H>::size();
else return pack_prj<j - 1, T...>::prj(x);
}
};
template<Nat j>
struct pack_prj<j> {
static Nat prj(Nat x) { throw "Invalid projection index"; }
};
// INJECTIONS
template <Nat j, class ...T>
struct pack_inj;
// recursive case
template<Nat j, class H, class ...T>
struct pack_inj <j,H,T...> {
static Nat inj( Nat x) {
if (j == 0) return x + Sum<T...>::size();
else return pack_inj<j - 1, T...>::inj(x);
}
};
template<Nat j>
struct pack_inj<j> {
static Nat inj(Nat x) { throw "Invalid injection index"; }
};
template<Nat j, class ...T>
struct caseno;
template<Nat j, class H, class ...T>
struct caseno<j, H, T...> {
static Nat idx(Nat x) {
if(x >= Sum<T...>::size()) return j;
else return caseno<j + 1, T...>::idx(x);
}
};
template<Nat j, class...>
struct caseno {
static Nat idx(Nat x) { throw "Impossible caseno runout"; }
};
template<Nat j, class ...T>
struct caseval;
template<Nat j, class H, class ...T>
struct caseval<j, H, T...> {
static Nat val(Nat x) {
if(x >= Sum<T...>::size()) return x - Sum<T...>::size();
else return caseval<j + 1, T...>::val(x);
}
};
template<Nat j, class...>
struct caseval {
static Nat val(Nat x) { throw "Impossible caseval runout"; }
};
//Unary operators
template <template<class> class op, class ...T>
struct unop{
static Nat mfold(Nat, Nat);
static Nat afold(Nat, Nat);
};
template<template<class> class op>
struct unop<op> {
static Nat mfold(Nat acc, Nat x) { return acc; }
static Nat afold(Nat acc, Nat x) { return acc; }
};
template<template<class> class op, class H, class ...T>
struct unop<op,H,T...> {
static Nat mfold(Nat acc, Nat x) {
Nat LHS = x / Product<T...>::size() % H::size();
H R = op<H>::op(H{LHS});
Nat Rscaled = R.get() * Product<T...>::size();
Nat Nuacc = acc + Rscaled;
return unop<op,T...>::mfold(Nuacc, x);
}
static Nat afold(Nat acc, Nat x) {
Nat LHS = x - Sum<T...>::size() % H::size();
H R = op<H>::op(H{LHS});
Nat Rscaled = R.get() + Sum<T...>::size();
Nat Nuacc = acc + Rscaled;
return unop<op,T...>::afold(Nuacc, x);
}
};
//binary operators
template <template<class> class op, class ...T>
struct binop{
static Nat mfold(Nat, Nat, Nat);
static Nat afold(Nat, Nat, Nat);
};
template<template<class> class op>
struct binop<op> {
static Nat mfold(Nat acc, Nat x, Nat y) { return acc; }
static Nat afold(Nat acc, Nat x, Nat y) { return acc; }
};
template<template<class> class op, class H, class ...T>
struct binop<op,H,T...> {
static Nat mfold(Nat acc, Nat x, Nat y) {
Nat LHS = x / Product<T...>::size() % H::size();
Nat RHS = y / Product<T...>::size() % H::size();
H R = op<H>::op(H{LHS}, H{RHS});
Nat Rscaled = R.get() * Product<T...>::size();
Nat Nuacc = acc + Rscaled;
return binop<op,T...>::mfold(Nuacc, x,y);
}
static Nat afold(Nat acc, Nat x, Nat y) {
Nat LHS = x - Sum<T...>::size() % H::size();
Nat RHS = y - Sum<T...>::size() % H::size();
H R = op<H>::op(H{LHS}, H{RHS});
Nat Rscaled = R.get() + Sum<T...>::size();
Nat Nuacc = acc + Rscaled;
return binop<op,T...>::afold(Nuacc, x,y);
}
};
// output for type name lists
template <class ...T>
struct tname;
template<class H>
struct tname<H> {
static ::std::string tnam () { return H::type_name(); }
};
template<class H, class ...T>
struct tname<H,T...> {
static ::std::string tnam() { return H::type_name()+ ", " + tname<T...>::tnam(); }
};
template<class ...>
struct repr;
template<class H>
struct repr<H> {
static ::std::string prepr(Nat x) { return H{x % H::size()}.repr(); }
};
template<class H, class ...T>
struct repr<H,T...> {
static ::std::string prepr(Nat x) {
return H{x / Product<T...>::size() % H::size()}.repr() + "," + repr<T...>::prepr(x); }
};
template<int cur, class...>
struct sumarg;
template<int cur>
struct sumarg<cur> {
static ::std::string arg(int,Nat) { throw "impossible"; }
};
template<int cur, class H, class ...T>
struct sumarg<cur,H,T...> {
static ::std::string arg(int req, Nat rep) {
if(cur == req) return H{rep - Sum<T...>::size()}.repr();
else return sumarg<cur + 1, T...>::arg(req, rep);
}
};
// output for products
template <class ...T>
struct out;
template<class H>
struct out<H> {
static ::std::ostream& put(::std::ostream &o, Nat x) {
return o << H(x % H::size());
}
};
template<class H, class ...T>
struct out<H,T...> {
static ::std::ostream& put(::std::ostream& o, Nat x) {
o << H(x / Product<T...>::size() % H::size()) << ", ";
return out<T...>::put (o,x);
}
};
template<class Base>
struct ainit {
consteval static Nat init(Base head, Base tail...) {
return head.get() * sizeof(tail) * Base::size() + init(tail);
}
consteval static Nat init() { return 0; }
};
}
// Cartesian Product
//
// Products of rings are rings with compponent wise arithmetic
//
// Nullary case: type with one value, namely 0 so no representation is required
using Unit = Product<>;
// Unit is isomorphic to N<1>
// So we might think about conversions .. however the behavour is the same.
//
template<>
struct Product<> {
static consteval Nat size() { return 1; }
constexpr Product() {}
static ::std::string type_name() { return "Product<>"; }
Nat get() const { return 0; }
Product add(Product x) const { return Product(); }
Product sub(Product x) const { return Product(); }
Product mul(Product x) const { return Product(); }
Product div(Product x) const { return Product(); }
Product mod(Product x) const { return Product(); }
Product neg() const { return Product(); }
Product succ() const { return Product(); }
Product pred() const { return Product(); }
Product zero() const { return Product(); }
friend ::std::ostream& operator << (::std::ostream& o, Product x) {
return o << "{}";
}
};
// Recursion
template<class H, class ...T>
class Product<H, T...> {
Nat rep; // should be private
public:
static consteval Nat size() { return H::size() * Product<T...>::size(); }
static ::std::string type_name() { return "Product<"+helper::tname<H,T...>::tnam() +">"; }
Nat get() const { return rep; }
Product(Nat x) : rep(x) {} // should be private ...
constexpr Product(H head, T ...tail) :
rep((head.get() % H::size())* Product<T...>::size() + Product<T...>(tail...).get())
{}
Product add(Product x) const { return helper::binop<helper::add,H,T...>::mfold(0,rep, x.rep); }
Product sub(Product x) const { return helper::binop<helper::sub,H,T...>::mfold(0,rep, x.rep); }
Product mul(Product x) const { return helper::binop<helper::mul,H,T...>::mfold(0,rep, x.rep); }
Product div(Product x) const { return helper::binop<helper::div,H,T...>::mfold(0,rep, x.rep); }
Product mod(Product x) const { return helper::binop<helper::mod,H,T...>::mfold(0,rep, x.rep); }
Product neg() const { return helper::unop<helper::neg,H,T...>::mfold(0,rep); }
Product succ() const { return Product((rep + 1) % size()); }
Product pred() const { return Product((rep + size() - 1) % size()); }
consteval static Product zero() { return 0; }
// comparisons
constexpr bool eq(Product x) const { return x.rep == rep; }
constexpr bool lt(Product x) const { return x.rep < rep; }
constexpr bool le(Product x) const { return x.rep <= rep; }
constexpr bool ge(Product x) const { return x.rep >= rep; }
constexpr bool gt(Product x) const { return x.rep > rep; }
constexpr bool ne(Product x) const { return x.rep != rep; }
friend ::std::ostream& operator << (::std::ostream& o, Product x) {
o << "{";
helper::out<H,T...>::put(o,x.rep);
return o << "}";
}
::std::string repr() const { return "Product{" + helper::repr<H,T...>::prepr(rep) + "}"; }
};
template<>
struct Sum<> {
static consteval Nat size() { return 0; }
constexpr Sum() {}
};
using Void = Sum<>;
template<class H, class ...T>
class Sum<H, T...> {
Nat rep; // should be private
public:
static consteval Nat size() { return H::size() + Sum<T...>::size(); }
static ::std::string type_name() { return "Sum<"+helper::tname<H,T...>::tnam() +">"; }
Nat get() const { return rep; }
Sum(Nat x) : rep(x) {} // should be private ...
Nat caseno() const { return helper::caseno<0,H,T...>::idx(rep); }
Nat caseval() const { return helper::caseval<0,H,T...>::val(rep); }
Sum add(Sum x) const { return helper::binop<helper::add,H,T...>::afold(0,rep, x.rep); }
Sum sub(Sum x) const { return helper::binop<helper::sub,H,T...>::afold(0,rep, x.rep); }
Sum mul(Sum x) const { return helper::binop<helper::mul,H,T...>::afold(0,rep, x.rep); }
Sum div(Sum x) const { return helper::binop<helper::div,H,T...>::afold(0,rep, x.rep); }
Sum mod(Sum x) const { return helper::binop<helper::mod,H,T...>::afold(0,rep, x.rep); }
Sum neg() const { return helper::unop<helper::neg,H,T...>::afold(0,rep); }
Sum succ() const { Nat x = size(); return Sum((rep + 1) % x); }
Sum pred() const { return Sum((rep + size() - 1) % size()); }
consteval static Sum zero() { return 0; }
// comparisons
constexpr bool eq(Sum x) const { return x.rep == rep; }
constexpr bool lt(Sum x) const { return x.rep < rep; }
constexpr bool le(Sum x) const { return x.rep <= rep; }
constexpr bool ge(Sum x) const { return x.rep >= rep; }
constexpr bool gt(Sum x) const { return x.rep > rep; }
constexpr bool ne(Sum x) const { return x.rep != rep; }
friend ::std::ostream& operator << (::std::ostream& o, Sum x) {
o << "<";
helper::out<H,T...>::put(o,x.rep);
return o << ">";
}
// NOTE: it's impossible to write the code to show the correctly typed argument
// because that needs a *runtime* switch over the caseno.
// we CAN show the representation though.. there's a constructor for it
// but although it's public at the moment, it should be private
::std::string repr() const { return "injection<" +
::std::to_string (caseno()) + ", " + type_name() +
">::inj{"+helper::sumarg<0,H,T...>::arg(caseno(), rep)+"}";
}
};
// deduction guide
template<class H, class ...T>
Product(H, T...) -> Product<H,T...>;
// Projection
template<Nat j, class ...T>
struct projection;
template<Nat j, class ...T>
struct projection<j, Product<T...>> {
using P = Product<T...>;
using Dummy = ::std::tuple<T...>;
using PrjT = typename ::std::tuple_element<j,Dummy>::type;
static auto prj (P x) -> PrjT { return helper::pack_prj<j,T...>::prj(x.get()); }
};
// Injection
template<Nat j, class ...T>
struct injection;
template<Nat j, class ...T>
struct injection<j, Sum<T...>> {
using S = Sum<T...>;
using Dummy = ::std::tuple<T...>;
using InjT = typename ::std::tuple_element<j,Dummy>::type;
static auto inj (InjT x) -> S { return helper::pack_inj<j,T...>::inj(x.get()); }
};
// standard array
template<class Base, class Index> // index must be compact linear type
class Array {
Base data[Index::size()];
public:
Base get(Index i) const { return data[i.get()]; }
void set (Index i, Base v) { data[i.get()] = v; }
consteval static Nat size() { return Index::size(); }
};
template<class Base, class Index>
struct array_projection {
using A = Array<Base, Index>;
static auto aprj (A a, Index i) -> A { return a.get(i); }
};
// Compact array
template<class Base, class Index> // index must be compact linear type
class CompactArray {
Nat rep;
public:
CompactArray (Base v...) {
static_assert (sizeof(v) == Index::size());
rep = helper::ainit<Base>::init(v);
}
Base get(Index i) const { return rep / (Base::size() * i.get()) % Base::size(); }
consteval static Nat size() { return Index::size() * Base::size(); }
};
// Standard Array Projection
template<class Base, class Index>
struct compact_array_projection {
using A = CompactArray<Base, Index>;
static auto aprj (A a, Index i) -> A { return a.get(i); }
};
// =========================================================================
// ATOMIC
// functional forms: operators
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator + (N<n> x, N<n> y) { return x.add(y); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator - (N<n> x, N<n> y) { return x.sub(y); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator * (N<n> x, N<n> y) { return x.mul(y); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator / (N<n> x, N<n> y) { return x.div (y); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator % (N<n> x, N<n> y) { return x.mod(y); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> operator - (N<n> x) { return x.neg(); }
// functional forms: comparisons
template<Nat n> requires (n <= maxrep)
constexpr bool operator == (N<n> x, N<n> y) { return x.eq(y); }
template<Nat n> requires (n <= maxrep)
constexpr bool operator != (N<n> x, N<n> y) { return x.ne(y); }
template<Nat n> requires (n <= maxrep)
constexpr bool operator < (N<n> x, N<n> y) { return x.lt(y); }
template<Nat n> requires (n <= maxrep)
constexpr bool operator <= (N<n> x, N<n> y) { return x.le(y); }
template<Nat n> requires (n <= maxrep)
constexpr bool operator >= (N<n> x, N<n> y) { return x.ge(y); }
template<Nat n> requires (n <= maxrep)
constexpr bool operator > (N<n> x, N<n> y) { return x.gt(y); }
// functional forms: iterators
template<Nat n> requires (n <= maxrep)
constexpr N<n> succ (N<n> x) { return x.succ(); }
template<Nat n> requires (n <= maxrep)
constexpr N<n> pred (N<n> x) { return x.pred(); }
// =========================================================================
// PRODUCTS
// functional forms: operators
template<class ...Args>
constexpr Product<Args...> operator + (Product<Args...> x, Product<Args...> y) { return x.add(y); }
template<class ...Args>
constexpr Product<Args...> operator - (Product<Args...> x, Product<Args...> y) { return x.sub(y); }
template<class ...Args>
constexpr Product<Args...> operator * (Product<Args...> x, Product<Args...> y) { return x.mul(y); }
template<class ...Args>
constexpr Product<Args...> operator / (Product<Args...> x, Product<Args...> y) { return x.div (y); }
template<class ...Args>
constexpr Product<Args...> operator % (Product<Args...> x, Product<Args...> y) { return x.mod(y); }
template<class ...Args>
constexpr Product<Args...> operator - (Product<Args...> x) { return x.neg(); }
// functional forms: comparisons
template<class ...Args>
constexpr bool operator == (Product<Args...> x, Product<Args...> y) { return x.eq(y); }
template<class ...Args>
constexpr bool operator != (Product<Args...> x, Product<Args...> y) { return x.ne(y); }
template<class ...Args>
constexpr bool operator < (Product<Args...> x, Product<Args...> y) { return x.lt(y); }
template<class ...Args>
constexpr bool operator <= (Product<Args...> x, Product<Args...> y) { return x.le(y); }
template<class ...Args>
constexpr bool operator >= (Product<Args...> x, Product<Args...> y) { return x.ge(y); }
template<class ...Args>
constexpr bool operator > (Product<Args...> x, Product<Args...> y) { return x.gt(y); }
// functional forms: iterators
template<class ...Args>
constexpr Product<Args...> succ (Product<Args...> x) { return x.succ(); }
template<class ...Args>
constexpr Product<Args...> pred (Product<Args...> x) { return x.pred(); }
// =========================================================================
// SUMS
// functional forms: operators
template<class ...Args>
constexpr Sum<Args...> operator + (Sum<Args...> x, Sum<Args...> y) { return x.add(y); }
template<class ...Args>
constexpr Sum<Args...> operator - (Sum<Args...> x, Sum<Args...> y) { return x.sub(y); }
template<class ...Args>
constexpr Sum<Args...> operator * (Sum<Args...> x, Sum<Args...> y) { return x.mul(y); }
template<class ...Args>
constexpr Sum<Args...> operator / (Sum<Args...> x, Sum<Args...> y) { return x.div (y); }
template<class ...Args>
constexpr Sum<Args...> operator % (Sum<Args...> x, Sum<Args...> y) { return x.mod(y); }
template<class ...Args>
constexpr Sum<Args...> operator - (Sum<Args...> x) { return x.neg(); }
// functional forms: comparisons
template<class ...Args>
constexpr bool operator == (Sum<Args...> x, Sum<Args...> y) { return x.eq(y); }
template<class ...Args>
constexpr bool operator != (Sum<Args...> x, Sum<Args...> y) { return x.ne(y); }
template<class ...Args>
constexpr bool operator < (Sum<Args...> x, Sum<Args...> y) { return x.lt(y); }
template<class ...Args>
constexpr bool operator <= (Sum<Args...> x, Sum<Args...> y) { return x.le(y); }
template<class ...Args>
constexpr bool operator >= (Sum<Args...> x, Sum<Args...> y) { return x.ge(y); }
template<class ...Args>
constexpr bool operator > (Sum<Args...> x, Sum<Args...> y) { return x.gt(y); }
// functional forms: iterators
template<class ...Args>
constexpr Sum<Args...> succ (Sum<Args...> x) { return x.succ(); }
template<class ...Args>
constexpr Sum<Args...> pred (Sum<Args...> x) { return x.pred(); }
// =========================================================================
int main() {
::std::cout << "Hello world" << ::std::endl;
N<16> x{9};
::std::cout << "x Type name = " << x.type_name() << ::std::endl;
::std::cout << "x repr = " << x.repr() << ::std::endl;
::std::cout << x << ", " << x + x << ::std::endl;
// product
N<3> x3_2{2};
N<2> x2_1{1};
using P32 = Product<N<3>,N<2>>;
P32 x32_21{x3_2,x2_1};
::std::cout << "x32_21="<< x32_21 << ::std::endl;
::std::cout << "x32_21::type_name="<< x32_21.type_name() << ::std::endl;
::std::cout << "x32_21::repr ="<< x32_21.repr() << ::std::endl;
// apply projections
N<3> c0 = projection<0,P32>::prj(x32_21);
N<2> c1 = projection<1,P32>::prj(x32_21);
// print components
::std::cout << "x32_21.prj0="<< c0 << ::std::endl;
::std::cout << "x32_21:prj1="<< c1 << ::std::endl;
// addition
::std::cout << "x32_21+x32_21=" << (x32_21.add(x32_21)) << ::std::endl;
::std::cout << x32_21 << " + " << x32_21 <<" = " << (x32_21.add(x32_21)) << ::std::endl;
// OK lets get messy!!!
auto messy = Product/*<P32, P32>*/ {x32_21, x32_21};
::std::cout <<"x= "<< messy << ::std::endl;
::std::cout <<"-x= "<< messy.neg() << ::std::endl;
::std::cout <<"x+x="<< messy.add(messy) << ::std::endl;
::std::cout <<"x-x="<< messy.sub(messy) << ::std::endl;
::std::cout <<"x*x="<< messy.mul(messy) << ::std::endl;
::std::cout <<"x/x="<< messy.div(messy) << ::std::endl;
::std::cout <<"x%x="<< messy.mod(messy) << ::std::endl;
::std::cout <<"-x= "<< (-messy) << ::std::endl;
::std::cout <<"x+x="<< (messy + messy) << ::std::endl;
::std::cout <<"x-x="<< (messy - messy) << ::std::endl;
::std::cout <<"x*x="<< (messy * messy) << ::std::endl;
::std::cout <<"x/x="<< (messy / messy) << ::std::endl;
::std::cout <<"x%x="<< (messy % messy) << ::std::endl;
::std::cout <<"x==x="<< (messy == messy) << ::std::endl;
::std::cout <<"x!=x="<< (messy != messy) << ::std::endl;
::std::cout <<"x<x="<< (messy < messy) << ::std::endl;
::std::cout <<"x<=x="<< (messy <= messy) << ::std::endl;
::std::cout <<"x>x="<< (messy > messy) << ::std::endl;
::std::cout <<"x>=x="<< (messy >= messy) << ::std::endl;
// unary case
auto unitary = Product { N<3>{2} };
auto xx = projection<0, Product<N<3>>>::prj (unitary);
::std::cout << xx << ::std::endl;
::std::cout << unitary << ::std::endl;
::std::cout << unitary.add(unitary) << ::std::endl;
// nullary case
auto nullary =Product{};
::std::cout << nullary << ::std::endl;
::std::cout << nullary.add(nullary) << ::std::endl;
for (auto i = ring_iterator<N<5>>::begin(); i != ring_iterator<N<5>>::end(); ++i)
::std::cout << *i << ::std::endl
;
for (auto i : ring_iterator<N<5>>::all())
::std::cout << i << ::std::endl
;
using S32 = Sum<N<3>,N<2>>;
auto c1_1 = injection<1,S32>::inj(1); // case 1, value 1:2, rep = 1
auto c0_1 = injection<0,S32>::inj(1); // case 0, value 1:3, rep = 3
::std::cout << "c1_1 repr = " << c1_1.repr() << ::std::endl;
::std::cout << "c1_1.rep=" << c1_1.get() << ", caseno = " << c1_1.caseno() << ", caseval=" << c1_1.caseval() << ::std::endl;
::std::cout << "c0_1.rep=" << c0_1.get() << ", caseno = " << c0_1.caseno() << ", caseval=" << c0_1.caseval() << ::std::endl;
// nested
using S32_32 = Sum<S32, S32>;
auto c111 = injection<1, S32_32>::inj(c1_1);
auto c011 = injection<0, S32_32>::inj(c1_1);
::std::cout << "c111.rep=" << c111.get() << ", caseno = " << c111.caseno() << ", caseval=" << c111.caseval() << ::std::endl;
::std::cout << "c011.rep=" << c011.get() << ", caseno = " << c011.caseno() << ", caseval=" << c011.caseval() << ::std::endl;
::std::cout << "c111 repr = " << c111.repr() << ::std::endl;
::std::cout << "c011 repr = " << c011.repr() << ::std::endl;
Array<int, N<3>> a;
a.set(N<3>{0},0);
a.set(N<3>{1},1);
a.set(N<3>{2},2);
for (auto i : ring_iterator<N<3>>::all())
::std::cout << a.get(i) << " ";
::std::cout << ::std::endl;
Array<int, P32> p;
auto v = 0;
for (auto i : ring_iterator<N<3>>::all())
for (auto j : ring_iterator<N<2>>::all())
{
p.set(Product{i,j}, v);
++v;
}
for (auto i : ring_iterator<P32>::all())
::std::cout << p.get(i);
::std::cout << ::std::endl;
auto ca = CompactArray<N<2>,N<3>>{N<2>{1},N<2>{1},N<2>{0}};
}