-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain_classifier.py
235 lines (200 loc) · 9.1 KB
/
train_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
from src.model import VisionTransformer as ViT
from torch.utils.data import DataLoader
import torch
from tqdm import tqdm
import numpy as np
from src.config import get_train_config
from src.utils import setup_device, TensorboardWriter, MetricTracker, load_checkpoint, write_json, accuracy
import random
from src.dataset import *
import os
def train_epoch(epoch, model, data_loader, criterion, optimizer, lr_scheduler, metrics, device=torch.device('cpu')):
metrics.reset()
# training loop
for batch_idx, (batch_data, batch_target) in enumerate(tqdm(data_loader)):
batch_data = batch_data.to(device)
batch_target = batch_target.to(device)
optimizer.zero_grad()
batch_pred = model(batch_data)
loss = criterion(batch_pred, batch_target)
loss.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
#torch.cuda.empty_cache()
if metrics.writer is not None:
metrics.writer.set_step((epoch - 1) * len(data_loader) + batch_idx)
metrics.update('loss', loss.item())
if batch_idx % 100 == 10:
if config.num_classes >= 5:
acc1, acc5 = accuracy(batch_pred, batch_target, topk=(1, 5))
metrics.update('acc1', acc1.item())
metrics.update('acc5', acc5.item())
else:
acc1 = accuracy(batch_pred, batch_target, topk=(1,))
metrics.update('acc1', acc1[0].item())
return metrics.result()
def valid_epoch(epoch, model, data_loader, criterion, metrics, device=torch.device('cpu')):
metrics.reset()
losses = []
acc1s = []
acc5s = []
# validation loop
with torch.no_grad():
for batch_idx, (batch_data, batch_target) in enumerate(tqdm(data_loader)):
batch_data = batch_data.to(device)
batch_target = batch_target.to(device)
batch_pred = model(batch_data)
loss = criterion(batch_pred, batch_target)
losses.append(loss.item())
if config.num_classes >= 5:
acc1, acc5 = accuracy(batch_pred, batch_target, topk=(1, 5))
acc1s.append(acc1.item())
acc5s.append(acc5.item())
else:
acc1 = accuracy(batch_pred, batch_target, topk=(1,))
acc1s.append(acc1[0].item())
loss = np.mean(losses)
acc1 = np.mean(acc1s)
if config.num_classes >= 5:
acc5 = np.mean(acc5s)
if metrics.writer is not None:
metrics.writer.set_step(epoch, 'valid')
metrics.update('loss', loss)
metrics.update('acc1', acc1)
if config.num_classes >= 5:
metrics.update('acc5', acc5)
return metrics.result()
def save_model(save_dir, epoch, model, optimizer, lr_scheduler, device_ids, best=False, save_freq=100):
state = {
'epoch': epoch,
'state_dict': model.state_dict() if len(device_ids) <= 1 else model.module.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': None if lr_scheduler is None else lr_scheduler.state_dict(),
}
filename = str(save_dir + 'ckpt_epoch_current.pth')
torch.save(state, filename)
if best:
filename = str(save_dir + 'ckpt_epoch_best.pth')
torch.save(state, filename)
elif epoch%save_freq==0:
filename = str(save_dir + 'ckpt_epoch_' + str(epoch) + '.pth')
print('Saving file : ',filename)
torch.save(state, filename)
def main(config, device, device_ids):
# tensorboard
writer = TensorboardWriter(config.summary_dir, config.tensorboard)
# metric tracker
if config.num_classes >= 5:
metric_names = ['loss', 'acc1', 'acc5']
else:
metric_names = ['loss', 'acc1']
train_metrics = MetricTracker(*[metric for metric in metric_names], writer=writer)
valid_metrics = MetricTracker(*[metric for metric in metric_names], writer=writer)
# create model
print("create model")
model = ViT(
image_size=(config.image_size, config.image_size),
patch_size=(config.patch_size, config.patch_size),
emb_dim=config.emb_dim,
mlp_dim=config.mlp_dim,
num_heads=config.num_heads,
num_layers=config.num_layers,
num_classes=config.num_classes,
attn_dropout_rate=config.attn_dropout_rate,
dropout_rate=config.dropout_rate,
)
# load checkpoint
if config.checkpoint_path:
state_dict = load_checkpoint(config.checkpoint_path, new_img=config.image_size, emb_dim=config.emb_dim,
layers= config.num_layers,patch=config.patch_size)
print("Loading pretrained weights from {}".format(config.checkpoint_path))
if not config.eval and config.num_classes != state_dict['classifier.weight'].size(0) :#not
del state_dict['classifier.weight']
del state_dict['classifier.bias']
print("re-initialize fc layer")
missing_keys = model.load_state_dict(state_dict, strict=False)
else:
missing_keys = model.load_state_dict(state_dict, strict=False)
print("Missing keys from checkpoint ",missing_keys.missing_keys)
print("Unexpected keys in network : ",missing_keys.unexpected_keys)
# send model to device
model = model.to(device)
if len(device_ids) > 1:
model = torch.nn.DataParallel(model, device_ids=device_ids)
# create dataloader
config.model = 'vit'
if config.dataset == "CUB":
total_classes = 200
import pickle
with open("src/cub_osr_splits.pkl", "rb") as f:
splits = pickle.load(f)
known_classes = splits['known_classes']
else:
random.seed(config.random_seed)
if config.dataset == "MNIST" or config.dataset == "SVHN" or config.dataset == "CIFAR10":
total_classes = 10
elif config.dataset == "TinyImageNet":
total_classes = 200
known_classes = random.sample(range(0, total_classes), config.num_classes)
train_dataset = eval("get{}Dataset".format(config.dataset))(image_size=config.image_size, split='train', data_path=config.data_dir, known_classes=known_classes)
train_dataloader = DataLoader(train_dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)
valid_dataset = eval("get{}Dataset".format(config.dataset))(image_size=config.image_size, split='in_test', data_path=config.data_dir, known_classes=known_classes)
valid_dataloader = DataLoader(valid_dataset, batch_size=config.batch_size, shuffle=True, num_workers=config.num_workers)
# training criterion
print("create criterion and optimizer")
criterion = torch.nn.CrossEntropyLoss(label_smoothing=config.label_smoothing).to(device)
# create optimizers and learning rate scheduler
if config.opt =="AdamW":
print("Using AdmW optimizer")
optimizer = torch.optim.AdamW(params=model.parameters(),lr=config.lr,weight_decay=config.wd)
else:
optimizer = torch.optim.SGD(
params=model.parameters(),
lr=config.lr,
weight_decay=config.wd,
momentum=0.9)
lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(
optimizer=optimizer,
max_lr=config.lr,
pct_start=config.warmup_steps / config.train_steps,
total_steps=config.train_steps)
# start training
print("start training")
best_acc = 0.0
best_epoch = 0
config.epochs = config.train_steps // len(train_dataloader)
print("length of train loader : ",len(train_dataloader),' and total epoch ',config.epochs)
for epoch in range(1, config.epochs + 1):
for param_group in optimizer.param_groups:
print("learning rate at {0} epoch is {1}".format(epoch, param_group['lr']))
log = {'epoch': epoch}
# train the model
model.train()
result = train_epoch(epoch, model, train_dataloader, criterion, optimizer, lr_scheduler, train_metrics, device)
log.update(result)
# validate the model
model.eval()
result = valid_epoch(epoch, model, valid_dataloader, criterion, valid_metrics, device)
log.update(**{'val_' + k: v for k, v in result.items()})
# best acc
if log['val_acc1'] > best_acc:
best_acc = log['val_acc1']
best_epoch = epoch
best = True
else:
best = False
# save model
save_model(config.checkpoint_dir, epoch, model, optimizer, lr_scheduler, device_ids, best, config.save_freq)
# print logged informations to the screen
for key, value in log.items():
print(' {:15s}: {}'.format(str(key), value))
print("Best accuracy : ",best_acc, ' for ',best_epoch)# saving class mean
best_curr_acc = {'best_acc':best_acc,'best_epoch':best_epoch,
'curr_acc':log['val_acc1'],'curr_epoch':epoch}
write_json(best_curr_acc,os.path.join(config.checkpoint_dir,'acc.json'))
if __name__ == '__main__':
config = get_train_config()
# device
device, device_ids = setup_device(config.n_gpu)
main(config, device, device_ids)