-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmeasure_osrdetector.py
220 lines (176 loc) · 9.77 KB
/
measure_osrdetector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import torch
from src.config import *
from src.model import OODTransformer
import random
from torch.utils.data import DataLoader
from src.dataset import *
from torch.nn import functional as F
import sklearn.metrics as skm
from src.utils import write_json
def parse_option():
parser = argparse.ArgumentParser(description='PyTorch code: Mahalanobis detector')
parser.add_argument("--exp-name", type=str, default="ft", help="experiment name")
parser.add_argument('--batch_size', type=int, default=64, metavar='N', help='batch size for data loader')
parser.add_argument('--in-dataset', default='cifar10', required=False, help='cifar10 | cifar100 | stl10 | ImageNet30')
parser.add_argument("--in-num-classes", type=int, default=1000, help="number of classes in dataset")
parser.add_argument('--out-dataset', default='cifar10', required=False, help='cifar10 | cifar100 | stl10 | ImageNet30')
parser.add_argument("--out-num-classes", type=int, default=1000, help="number of classes in dataset")
parser.add_argument("--data-dir", type=str, default='./data', help='data folder')
parser.add_argument('--gpu', type=int, default=0, help='gpu index')
parser.add_argument("--num-workers", type=int, default=8, help="number of workers")
parser.add_argument("--image-size", type=int, default=224, help="input image size", choices=[128, 160, 224, 384, 448])
opt = parser.parse_args()
return opt
def run_model(model, loader, softmax=False):
#run the resnet model
total = 0
out_list = []
tgt_list = []
cls_list = []
for images, target in loader:
total += images.size(0)
images = images.cuda()
output, classifier = model(images,feat_cls=True)
out_list.append(output.data.cpu())
cls_list.append(F.softmax(classifier, dim=1).data.cpu())
tgt_list.append(target)
return torch.cat(out_list), torch.cat(tgt_list), torch.cat(cls_list)
def euclidean_dist(x, support_mean):
'''
Compute euclidean distance between two tensors
'''
# x: N x D
# y: M x D
n = x.size(0)
m = support_mean.size(0)
d = x.size(1)
if d != support_mean.size(1):
raise Exception
x = x.unsqueeze(1).expand(n, m, d)
support_mean = support_mean.unsqueeze(0).expand(n, m, d)
#return torch.pow(x - support_mean, 2).sum(2)
return ((x - support_mean)*(x-support_mean)).sum(2)
def get_distances(in_list, out_list, classes_mean):
print('Compute euclidean distance for in and out distribution data')
test_dists = euclidean_dist(in_list, classes_mean)
out_dists = euclidean_dist(out_list, classes_mean)
return test_dists, out_dists
def get_roc_sklearn(xin, xood):
labels = [0] * len(xin) + [1] * len(xood)
data = np.concatenate((xin, xood))
auroc = skm.roc_auc_score(labels, data)
return auroc
def main(opt, model):
ckpt = torch.load(opt.ckpt_file, map_location=torch.device("cpu"))
# load networks
#model = opt.model
missing_keys = model.load_state_dict(ckpt['state_dict'], strict=False)
model = model.cuda()
model.eval()
print('load model: ' + opt.ckpt_file)
classes_mean = ckpt['classes_mean']
# load ID dataset
print('load in target data: ', opt.in_dataset)
if opt.in_dataset == "CUB":
import pickle
with open("src/cub_osr_splits.pkl", "rb") as f:
splits = pickle.load(f)
known_classes = splits['known_classes']
train_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='train', data_path=opt.data_dir, known_classes=known_classes)
in_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='in_test', data_path=opt.data_dir, known_classes=known_classes)
unknown_classes = splits['unknown_classes'][opt.mode]
out_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='in_test', data_path=opt.data_dir, known_classes=unknown_classes)
else:
random.seed(opt.random_seed)
if opt.in_dataset == "MNIST" or opt.in_dataset == "SVHN" or opt.in_dataset == "CIFAR10":
total_classes = 10
elif opt.in_dataset == "CIFAR100":
total_classes = 100
elif opt.in_dataset == "TinyImageNet":
total_classes = 200
known_classes = random.sample(range(0, total_classes), opt.in_num_classes)
train_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='train', data_path=opt.data_dir, known_classes=known_classes)
in_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='in_test', data_path=opt.data_dir, known_classes=known_classes)
# load OOD dataset
print('load out target data: ', opt.out_dataset)
if opt.in_dataset == opt.out_dataset:
unknown_classes = list(set(range(total_classes)) - set(known_classes))
out_dataset = eval("get{}Dataset".format(opt.in_dataset))(image_size=opt.image_size, split='out_test', data_path=opt.data_dir, known_classes=known_classes)
else:
random.seed(opt.random_seed)
if opt.out_dataset == "MNIST" or opt.out_dataset == "CIFAR10":
out_total_classes = 10
elif opt.out_dataset == "CIFAR100":
out_total_classes = 100
elif opt.out_dataset == "TinyImageNet":
out_total_classes = 200
unknown_classes = random.sample(range(0, out_total_classes), opt.out_num_classes)
out_dataset = eval("get{}Dataset".format(opt.out_dataset))(image_size=opt.image_size, split='in_test', data_path=opt.data_dir, known_classes=unknown_classes)
test_data_len = min(len(in_dataset), len(out_dataset))
random.seed(opt.random_seed)
in_index = random.sample(range(len(in_dataset)), test_data_len)
in_dataset = torch.utils.data.Subset(in_dataset, in_index)
random.seed(opt.random_seed)
out_index = random.sample(range(len(out_dataset)), test_data_len)
out_dataset = torch.utils.data.Subset(out_dataset, out_index)
train_dataloader = DataLoader(train_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
in_dataloader = DataLoader(in_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
out_dataloader = DataLoader(out_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
print('Compute sample mean for training data....')
train_emb, train_targets, train_sfmx = run_model(model,train_dataloader)
train_acc = float(torch.sum(torch.argmax(train_sfmx, dim=1) == train_targets)) / len(train_sfmx)
#in_classes = torch.unique(train_targets)
#class_idx = [torch.nonzero(torch.eq(cls, train_targets)).squeeze(dim=1) for cls in in_classes]
#classes_feats = [train_emb[idx] for idx in class_idx]
#classes_mean = torch.stack([torch.mean(cls_feats, dim=0) for cls_feats in classes_feats],dim=0)
in_emb, in_targets, in_sfmx = run_model(model,in_dataloader)
in_acc = float(torch.sum(torch.argmax(in_sfmx, dim=1) == in_targets)) / len(in_sfmx)
out_emb, out_targets, out_sfmx = run_model(model,out_dataloader)
in_dists, out_dists = get_distances(in_emb, out_emb, classes_mean)
in_dist_lbl = torch.argmax(in_sfmx, dim=1).cpu()
in_score = [dist[in_dist_lbl[i]].cpu() for i, dist in enumerate(in_dists)]
ood_lbl = torch.argmax(out_sfmx, dim=1).cpu()
ood_score = [dist[ood_lbl[i]].cpu() for i, dist in enumerate(out_dists)]
auroc = get_roc_sklearn(in_score,ood_score)
print("SSD AUROC {0}".format(auroc))
return {'train_acc': train_acc, 'in_acc': in_acc, 'auroc': auroc, 'known_classes': sorted(known_classes), 'unknown_classes': sorted(unknown_classes)}
def run_ood_distance(opt):
experiments_dir = os.path.join(os.getcwd(), 'experiments/save')#specify the root dir
for dir in os.listdir(experiments_dir):
exp_name, dataset, model_arch, _, _, _, num_classes, random_seed, _, _ = dir.split("_")
opt = eval("get_{}_config".format(model_arch))(opt)
model = OODTransformer(
image_size=(opt.image_size, opt.image_size),
patch_size=(opt.patch_size, opt.patch_size),
emb_dim=opt.emb_dim,
mlp_dim=opt.mlp_dim,
num_heads=opt.num_heads,
num_layers=opt.num_layers,
num_classes=opt.in_num_classes,
attn_dropout_rate=opt.attn_dropout_rate,
dropout_rate=opt.dropout_rate,
)
if opt.exp_name == exp_name and opt.in_dataset == dataset and opt.in_num_classes == int(num_classes[2:]):
ckpt_dir = os.path.join(experiments_dir, dir, "checkpoints")
for ckpt_file in os.listdir(ckpt_dir):
if ckpt_file.endswith(".pth"):
ckpt_file = os.path.join(ckpt_dir, ckpt_file)
opt.ckpt_file = ckpt_file
opt.random_seed = int(random_seed[2:])
if dataset == "CUB":
result = dict()
for mode in ["Easy", "Medium", "Hard"]:
print(mode)
opt.mode = mode
sub_result = main(opt, model)
result[mode] = sub_result
else:
result = main(opt, model)
result_path = os.path.join(experiments_dir, dir, "results", "best_ood{}_nood{}.json".format(opt.out_dataset, opt.out_num_classes) if "best" in ckpt_file else "current_ood{}_nood{}.json".format(opt.out_dataset, opt.out_num_classes))
write_json(result, result_path)
if __name__ == '__main__':
#parse argument
opt = parse_option()
run_ood_distance(opt)