-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathepisode.m
117 lines (105 loc) · 4.17 KB
/
episode.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
function [q, stats] = episode(q, rates, segments, qualities, complexities, capacities, alpha, lambda, tau, parallel, markov, benchmark)
% EPISODE = a video episode using the learner
%
% q = initial Q-value table
% rates = the available video bitrates
% segments = the length of the video in segments
% qualities = the quality matrix for every segment and every bitrate
% complexities = vector of the complexity indexes
% capacities = channel vector
% alpha = learning rate for the episode
% lambda = exponential discount factor
% tau = exploration temperature for the episode
% parallel = 1 if the learner performs parallel updates
% markov = 1 if the channel is Markovian, 0 if its values are given at
% 10ms intervals
% benchmark = 1 if the client uses the rate-based benchmark algorithm
%
% q = the updated Q-value table at the end of the episode
% stats = a matrix containing the episode statistic. The columns contain, for
% each segment:
% s_t (1) | w_t (1) | s_t (2) | w_t (2) | h_t | a_t | B_t | r_t | q_t |
% r_t^q | r_t^b (1) | r_t^b (2) | t | exp | Q(s_t, *)
% (s_t is divided into the components of the linear combination, and
% the two parts of r_t^b are given separately; exp is 1 if the action
% is exploratory)
% initialization
timer = 0;
buffer = 0;
last_update = 1;
download_time = 0;
update = false;
stats = zeros(segments, 22);
% segment-by-segment decision loop
for segment = 1 : segments,
% state value initialization (necessary for segment 1)
capacity = 0;
old_capacity = 0;
prev_quality = 0;
% state value retrieval
if(segment > 1),
capacity = stats(segment - 1, 5);
old_capacity = stats(max(segment - 2, 1), 5);
prev_quality = stats(segment - 1, 8);
end
% state calculation
states = find_state(capacity, old_capacity, prev_quality, complexities(segment), buffer, parallel, segment);
% stat collection: s_t
stats(segment, 1 : 4) = states;
% Q-value update for the offline algorithm
if (parallel + benchmark == 0 && (update || segment == segments) && segment > 1),
q = update_q(q, segment - 1, last_update, stats(:, 1 : 4), stats(:, 6), stats(:, 8), lambda, alpha);
last_update = segment;
end
% parallel Q-value update
if (parallel == 1 && benchmark == 0 && segment > 1),
q = parallel_update(q, states, stats(segment - 1, 1 : 4), prev_quality, stats(segment - 1, 6), stats(segment - 1, 8), download_time, capacity, complexities(segment), lambda, alpha);
end
% action selection
if (benchmark == 0),
% learner: Softmax policy
q_a = find_q(q, states);
stats(segment, 15 : 22) = q_a;
[update, action] = choose_action(q_a, tau);
else
% benchmark: rate-based policy
action = 8;
if(segment > 1)
while (action > 1 && rates(action - 1) <= capacity),
action = action - 1;
end
end
end
% stat collection: a_t and exp
stats(segment, 6) = action;
if (update),
stats(segment, 14) = 1;
end
%Segment download (for Markovian and instantaneous channels)
if (markov == 1),
download_time = download_markov(rates(action), capacities(segment));
stats(segment, 5) = capacities(segment);
else
[download_time, stats(segment, 5)] = download_step(capacities, rate, timer);
end
% reward calculation and stat collection
stats(segment, 9) = qualities(segment, action);
if (segment > 1),
[r_u, r_b, pen] = find_reward(stats(segment, 9), stats(segment - 1, 9), buffer, download_time);
stats(segment, 10) = r_u;
stats(segment, 11) = r_b;
stats(segment, 12) = pen;
end
stats(segment, 8) = stats(segment, 9) - stats(segment, 10) - stats(segment, 11) - stats(segment, 12);
% buffer update
buffer = max(0, buffer - download_time) + 2;
timer = timer + download_time;
% buffer overflow control
if (buffer > 20),
timer = timer + 2 - download_time;
buffer = buffer - 2 + download_time;
end
stats(segment, 7) = buffer;
stats(segment, 13) = timer;
end
end