-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbase.py
199 lines (146 loc) · 6.71 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import torch
import torch.nn as nn
import numpy as np
from torch.optim import Optimizer
from utils.modules import Encoder, Decoder
import torch.optim as optimizer_module
# utility function to initialize an optimizer from its name
def init_optimizer(optimizer_name, params):
assert hasattr(optimizer_module, optimizer_name)
OptimizerClass = getattr(optimizer_module, optimizer_name)
return OptimizerClass(params)
##########################
# Generic training class #
##########################
class Trainer(nn.Module):
def __init__(self, log_loss_every=10, writer=None):
super(Trainer, self).__init__()
self.iterations = 0
self.writer = writer
self.log_loss_every = log_loss_every
self.loss_items = {}
def get_device(self):
return list(self.parameters())[0].device
def train_step(self, data):
# Set all the models in training mode
self.train(True)
# Log the values in loss_items every log_loss_every iterations
if not (self.writer is None):
if (self.iterations + 1) % self.log_loss_every == 0:
self._log_loss()
# Move the data to the appropriate device
device = self.get_device()
for i, item in enumerate(data):
data[i] = item.to(device)
# Perform the training step and update the iteration count
self._train_step(data)
self.iterations += 1
def _add_loss_item(self, name, value):
assert isinstance(name, str)
assert isinstance(value, float) or isinstance(value, int)
if not (name in self.loss_items):
self.loss_items[name] = []
self.loss_items[name].append(value)
def _log_loss(self):
# Log the expected value of the items in loss_items
for key, values in self.loss_items.items():
self.writer.add_scalar(tag=key, scalar_value=np.mean(values), global_step=self.iterations)
self.loss_items[key] = []
def save(self, model_path):
items_to_save = self._get_items_to_store()
items_to_save['iterations'] = self.iterations
# Save the model and increment the checkpoint count
torch.save(items_to_save, model_path)
def load(self, model_path):
items_to_load = torch.load(model_path)
for key, value in items_to_load.items():
assert hasattr(self, key)
attribute = getattr(self, key)
# Load the state dictionary for the stored modules and optimizers
if isinstance(attribute, nn.Module) or isinstance(attribute, Optimizer):
attribute.load_state_dict(value)
# Move the optimizer parameters to the same correct device.
# see https://github.com/pytorch/pytorch/issues/2830 for further details
if isinstance(attribute, Optimizer):
device = list(value['state'].values())[0]['exp_avg'].device # Hack to identify the device
for state in attribute.state.values():
for k, v in state.items():
if isinstance(v, torch.Tensor):
state[k] = v.to(device)
# Otherwise just copy the value
else:
setattr(self, key, value)
def _get_items_to_store(self):
return dict()
def _train_step(self, data):
raise NotImplemented()
##########################
# Representation Trainer #
##########################
# Generic class to train an model with a (stochastic) neural network encoder
class RepresentationTrainer(Trainer):
def __init__(self, z_dim, optimizer_name='Adam', encoder_lr=1e-4, **params):
super(RepresentationTrainer, self).__init__(**params)
self.z_dim = z_dim
# Intialization of the encoder
self.encoder = Encoder(z_dim)
self.opt = init_optimizer(optimizer_name, [
{'params': self.encoder.parameters(), 'lr': encoder_lr},
])
def _get_items_to_store(self):
items_to_store = super(RepresentationTrainer, self)._get_items_to_store()
# store the encoder and optimizer parameters
items_to_store['encoder'] = self.encoder.state_dict()
items_to_store['opt'] = self.opt.state_dict()
return items_to_store
def _train_step(self, data):
loss = self._compute_loss(data)
self.opt.zero_grad()
loss.backward()
self.opt.step()
def _compute_loss(self, data):
raise NotImplemented
##########################
# Merge Trainer #
##########################
class MergeTrainer(Trainer):
def __init__(self, z_dim, optimizer_name='Adam', encoder_lr=1e-4, decoder_lr=1e-4, **params):
super(MergeTrainer, self).__init__(**params)
self.z_dim = z_dim
# Intialization of the encoder
self.encoder_x_s = Encoder(z_dim)
self.encoder_x_p = Encoder(z_dim)
self.encoder_y_s = Encoder(z_dim)
self.encoder_y_p = Encoder(z_dim)
# Intialization of the decoder
self.decoder_x_s = Decoder(z_dim)
self.decoder_x_p = Decoder(z_dim)
self.decoder_y_s = Decoder(z_dim)
self.decoder_y_p = Decoder(z_dim)
self.opt = init_optimizer(optimizer_name, [
{'params': self.encoder_x_s.parameters(), 'lr': encoder_lr},
{'params': self.encoder_x_p.parameters(), 'lr': encoder_lr},
{'params': self.encoder_y_s.parameters(), 'lr': encoder_lr},
{'params': self.encoder_y_p.parameters(), 'lr': encoder_lr},
{'params': self.decoder_x_s.parameters(), 'lr': decoder_lr},
{'params': self.decoder_x_p.parameters(), 'lr': decoder_lr},
{'params': self.decoder_y_s.parameters(), 'lr': decoder_lr},
{'params': self.decoder_y_p.parameters(), 'lr': decoder_lr},
])
def _get_items_to_store(self):
items_to_store = super(MergeTrainer, self)._get_items_to_store()
# store the encoder and optimizer parameters
items_to_store['encoder_x_s'] = self.encoder_x_s.state_dict()
items_to_store['encoder_x_p'] = self.encoder_x_p.state_dict()
items_to_store['encoder_y_s'] = self.encoder_y_s.state_dict()
items_to_store['encoder_y_p'] = self.encoder_y_p.state_dict()
items_to_store['opt'] = self.opt.state_dict()
return items_to_store
def _train_step(self, data):
loss = self._compute_loss(data)
self.opt.zero_grad()
loss.backward()
self.opt.step(0)
def _compute_loss(self, data):
raise NotImplemented