You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
I have successfully reproduced the results from your paper“SAM-Assisted Remote Sensing Imagery Semantic
Segmentation with Object and Boundary Constraints” and I am truly impressed with the outcome. Thank you for your team's contribution to advancing research in this field!
I am now trying to apply the "SAM+ model" you proposed to adapt to a new model, and I would like to ask what specific modifications I need to make for this adaptation. Could you kindly provide a detailed explanation?
Additionally, I encountered an issue with channel mismatch. Should I modify the model to accommodate SAM? If so, I would appreciate any guidance on how to handle this issue.
Looking forward to your advice and thank you in advance for your time.
Best regards!
Here is the error message I am encountering:
Loading Data: 0%| | 0/1000 [00:03<?, ?it/s]
Traceback (most recent call last):
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/DCSwin_train_Urban_DCSwin.py", line 228, in
train(net, optimizer, 50, scheduler)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/DCSwin_train_Urban_DCSwin.py", line 180, in train
output = net(data)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 184, in forward
return self.module(*inputs[0], **module_kwargs[0])
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 913, in forward
x = self.decoder(x1, x2, x3, x4)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 882, in forward
out1, out2 = self.dcfam(x1, x2, x3, x4)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 851, in forward
out4 = self.conv4(x4) + self.down34(self.pa(self.down232(x2)))
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 458, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 454, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [768, 768, 1, 1], expected input[10, 1024, 8, 8] to have 768 channels, but got 1024 channels instead
The text was updated successfully, but these errors were encountered:
Dear Author
I have successfully reproduced the results from your paper“SAM-Assisted Remote Sensing Imagery Semantic
Segmentation with Object and Boundary Constraints” and I am truly impressed with the outcome. Thank you for your team's contribution to advancing research in this field!
I am now trying to apply the "SAM+ model" you proposed to adapt to a new model, and I would like to ask what specific modifications I need to make for this adaptation. Could you kindly provide a detailed explanation?
Additionally, I encountered an issue with channel mismatch. Should I modify the model to accommodate SAM? If so, I would appreciate any guidance on how to handle this issue.
Looking forward to your advice and thank you in advance for your time.
Best regards!
Here is the error message I am encountering:
Loading Data: 0%| | 0/1000 [00:03<?, ?it/s]
Traceback (most recent call last):
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/DCSwin_train_Urban_DCSwin.py", line 228, in
train(net, optimizer, 50, scheduler)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/DCSwin_train_Urban_DCSwin.py", line 180, in train
output = net(data)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/parallel/data_parallel.py", line 184, in forward
return self.module(*inputs[0], **module_kwargs[0])
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 913, in forward
x = self.decoder(x1, x2, x3, x4)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 882, in forward
out1, out2 = self.dcfam(x1, x2, x3, x4)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/remote-home/cs_iot_zqw/SSRS/SSRS-main/SAM_RS/model/DCSwin.py", line 851, in forward
out4 = self.conv4(x4) + self.down34(self.pa(self.down232(x2)))
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/container.py", line 219, in forward
input = module(input)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1553, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1562, in _call_impl
return forward_call(*args, **kwargs)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 458, in forward
return self._conv_forward(input, self.weight, self.bias)
File "/home/zqw/anaconda3/envs/SAM_RS/lib/python3.8/site-packages/torch/nn/modules/conv.py", line 454, in _conv_forward
return F.conv2d(input, weight, bias, self.stride,
RuntimeError: Given groups=1, weight of size [768, 768, 1, 1], expected input[10, 1024, 8, 8] to have 768 channels, but got 1024 channels instead
The text was updated successfully, but these errors were encountered: