This repository has been archived by the owner on Oct 31, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathppo.py
269 lines (232 loc) · 9.36 KB
/
ppo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
import copy
import time
import hydra
import torch
import torch.nn as nn
import salina.rl.functional as RLF
from salina import Agent, Workspace, instantiate_class
from salina.agents import Agents, TemporalAgent
from salina.agents.brax import AutoResetBraxAgent,NoAutoResetBraxAgent
from salina.agents.gyma import AutoResetGymAgent,NoAutoResetGymAgent
from salina.logger import TFLogger
from salina_examples.rl.ppo_brax.agents import make_brax_env,make_gym_env,make_env
import numpy as np
import random
class Normalizer(Agent):
def __init__(self, env):
super().__init__()
env = make_env(env)
self.n_features = env.observation_space.shape[0]
self.n = None
def forward(self, t, update_normalizer=True, **kwargs):
input = self.get(("env/env_obs", t))
assert torch.isnan(input).sum() == 0.0, "problem"
if update_normalizer:
self.update(input)
input = self.normalize(input)
assert torch.isnan(input).sum() == 0.0, "problem"
self.set(("env/env_obs", t), input)
def update(self, x):
if self.n is None:
device = x.device
self.n = torch.zeros(self.n_features).to(device)
self.mean = torch.zeros(self.n_features).to(device)
self.mean_diff = torch.zeros(self.n_features).to(device)
self.var = torch.ones(self.n_features).to(device)
self.n += 1.0
last_mean = self.mean.clone()
self.mean += (x - self.mean).mean(dim=0) / self.n
self.mean_diff += (x - last_mean).mean(dim=0) * (x - self.mean).mean(dim=0)
self.var = torch.clamp(self.mean_diff / self.n, min=1e-2)
def normalize(self, inputs):
obs_std = torch.sqrt(self.var)
return (inputs - self.mean) / obs_std
def seed(self, seed):
torch.manual_seed(seed)
class NoAgent(Agent):
def __init__(self):
super().__init__()
def forward(self, **kwargs):
pass
def clip_grad(parameters, grad):
return (
torch.nn.utils.clip_grad_norm_(parameters, grad)
if grad > 0
else torch.Tensor([0.0])
)
def run_ppo(action_agent, critic_agent, logger, cfg):
if cfg.algorithm.use_observation_normalizer:
# norm_agent=BatchNormalizer(cfg.algorithm.env,momentum=None)
norm_agent = Normalizer(cfg.env)
else:
norm_agent = NoAgent()
env_acquisition_agent=None
env_validation_agent=None
env_name=cfg.env.env_name
if env_name.startswith("brax/"):
env_name=env_name[5:]
env_acquisition_agent = AutoResetBraxAgent(
env_name=env_name, n_envs=cfg.algorithm.n_envs
)
env_validation_agent = NoAutoResetBraxAgent(
env_name=env_name,
n_envs=cfg.algorithm.validation.n_envs,
)
else:
assert env_name.startswith("gym/")
env_name=env_name[4:]
env_acquisition_agent = AutoResetGymAgent(
make_gym_env,
{"env_name":env_name,"max_episode_steps":cfg.env.max_episode_steps},
n_envs=cfg.algorithm.n_envs,
)
env_validation_agent = NoAutoResetGymAgent(
make_gym_env,
{"env_name":env_name,"max_episode_steps":cfg.env.max_episode_steps},
n_envs=cfg.algorithm.validation.n_envs,
)
acquisition_agent = TemporalAgent(
Agents(env_acquisition_agent, norm_agent, action_agent)
).to(cfg.device)
acquisition_agent.seed(cfg.algorithm.env_seed)
workspace = Workspace()
train_agent = Agents(action_agent, critic_agent).to(cfg.device)
optimizer_policy = torch.optim.Adam(
action_agent.parameters(), lr=cfg.algorithm.lr_policy
)
optimizer_critic = torch.optim.Adam(
critic_agent.parameters(), lr=cfg.algorithm.lr_critic
)
validation_agent = TemporalAgent(
Agents(env_validation_agent, norm_agent, action_agent)
).to(cfg.device)
validation_agent.seed(cfg.algorithm.validation.env_seed)
validation_workspace = Workspace()
# === Running algorithm
epoch = 0
iteration = 0
nb_interactions = cfg.algorithm.n_envs * cfg.algorithm.n_timesteps
print("[PPO] Learning")
_epoch_start_time = time.time()
while epoch < cfg.algorithm.max_epochs:
# === Validation
if (epoch % cfg.algorithm.validation.evaluate_every == 0) and (epoch > 0):
validation_agent.eval()
validation_agent(
validation_workspace,
t=0,
stop_variable="env/done",
replay=False,
action_std=0.0,
update_normalizer=False,
)
length = validation_workspace["env/done"].float().argmax(0)
arange = torch.arange(length.size()[0], device=length.device)
creward = (
validation_workspace["env/cumulated_reward"][length, arange]
.mean()
.item()
)
logger.add_scalar("validation/reward", creward, epoch)
print("reward at epoch", epoch, ":\t", round(creward, 0))
validation_agent.train()
# === Acquisition
workspace.zero_grad()
if epoch > 0:
workspace.copy_n_last_steps(1)
acquisition_agent.train()
acquisition_agent(
workspace,
t=1 if epoch > 0 else 0,
n_steps=cfg.algorithm.n_timesteps - 1
if epoch > 0
else cfg.algorithm.n_timesteps,
replay=False,
action_std=cfg.algorithm.action_std,
)
logger.add_scalar(
"monitor/nb_interactions", (nb_interactions * (epoch + 1)), epoch
)
workspace.zero_grad()
#Saving acquisition action probabilities
workspace.set_full("old_action_logprobs",workspace["action_logprobs"].detach())
#Building mini workspaces
#Learning for cfg.algorithm.update_epochs epochs
for _ in range(cfg.algorithm.update_epochs):
miniworkspaces=[]
_stb=time.time()
for _ in range(cfg.algorithm.n_mini_batches):
miniworkspace=workspace.sample_subworkspace(cfg.algorithm.n_times_per_minibatch,cfg.algorithm.n_envs_per_minibatch,cfg.algorithm.n_timesteps_per_minibatch)
miniworkspaces.append(miniworkspace)
_etb=time.time()
logger.add_scalar("monitor/minibatches_building_time",_etb-_stb,epoch)
_B,_T=miniworkspaces[0].batch_size(),miniworkspaces[0].time_size()
print("Resulting in ",len(miniworkspaces)," workspaces of size ",(_B,_T)," => ",_B*_T," time = ",_etb-_stb)
random.shuffle(miniworkspaces)
#Learning on batches
for miniworkspace in miniworkspaces:
# === Update policy
train_agent(
miniworkspace,
t=None,
replay=True,
action_std=cfg.algorithm.action_std,
)
critic, done, reward = miniworkspace["critic", "env/done", "env/reward"]
old_action_lp = miniworkspace["old_action_logprobs"]
reward = reward * cfg.algorithm.reward_scaling
gae = RLF.gae(
critic,
reward,
done,
cfg.algorithm.discount_factor,
cfg.algorithm.gae,
).detach()
action_lp = miniworkspace["action_logprobs"]
ratio = action_lp - old_action_lp
ratio = ratio.exp()
ratio = ratio[:-1]
clip_adv = (
torch.clamp(
ratio,
1 - cfg.algorithm.clip_ratio,
1 + cfg.algorithm.clip_ratio,
)
* gae
)
loss_policy = -(torch.min(ratio * gae, clip_adv)).mean()
td0 = RLF.temporal_difference(
critic, reward, done, cfg.algorithm.discount_factor
)
loss_critic = (td0 ** 2).mean()
optimizer_critic.zero_grad()
optimizer_policy.zero_grad()
(loss_policy + loss_critic).backward()
n = clip_grad(action_agent.parameters(), cfg.algorithm.clip_grad)
optimizer_policy.step()
optimizer_critic.step()
logger.add_scalar("monitor/grad_norm_policy", n.item(), iteration)
logger.add_scalar("loss/policy", loss_policy.item(), iteration)
logger.add_scalar("loss/critic", loss_critic.item(), iteration)
logger.add_scalar("monitor/grad_norm_critic", n.item(), iteration)
iteration += 1
epoch += 1
@hydra.main(config_path=".", config_name="pendulum.yaml")
def main(cfg):
import torch.multiprocessing as mp
CUDA_AVAILABLE = torch.cuda.is_available()
if CUDA_AVAILABLE:
v = torch.ones(1, device="cuda:0")
action_agent = instantiate_class(cfg.action_agent)
critic_agent = instantiate_class(cfg.critic_agent)
mp.set_start_method("spawn")
logger = instantiate_class(cfg.logger)
run_ppo(action_agent, critic_agent, logger, cfg)
if __name__ == "__main__":
main()