Skip to content

Commit b7cd284

Browse files
authored
Sync docs and metadata (#717)
1 parent 001340e commit b7cd284

File tree

23 files changed

+185
-96
lines changed

23 files changed

+185
-96
lines changed

exercises/practice/affine-cipher/.docs/instructions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -4,7 +4,7 @@ Create an implementation of the affine cipher, an ancient encryption system crea
44

55
The affine cipher is a type of monoalphabetic substitution cipher.
66
Each character is mapped to its numeric equivalent, encrypted with a mathematical function and then converted to the letter relating to its new numeric value.
7-
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the atbash cipher, because it has many more keys.
7+
Although all monoalphabetic ciphers are weak, the affine cipher is much stronger than the Atbash cipher, because it has many more keys.
88

99
[//]: # " monoalphabetic as spelled by Merriam-Webster, compare to polyalphabetic "
1010

exercises/practice/atbash-cipher/.docs/instructions.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Instructions
22

3-
Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.
3+
Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.
44

55
The Atbash cipher is a simple substitution cipher that relies on transposing all the letters in the alphabet such that the resulting alphabet is backwards.
66
The first letter is replaced with the last letter, the second with the second-last, and so on.

exercises/practice/atbash-cipher/.meta/config.json

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@
2323
".meta/example.sh"
2424
]
2525
},
26-
"blurb": "Create an implementation of the atbash cipher, an ancient encryption system created in the Middle East.",
26+
"blurb": "Create an implementation of the Atbash cipher, an ancient encryption system created in the Middle East.",
2727
"source": "Wikipedia",
2828
"source_url": "https://en.wikipedia.org/wiki/Atbash"
2929
}
Lines changed: 4 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,8 @@
11
# Instructions
22

3-
Correctly determine the fewest number of coins to be given to a customer such that the sum of the coins' value would equal the correct amount of change.
3+
Determine the fewest number of coins to give a customer so that the sum of their values equals the correct amount of change.
44

5-
## For example
5+
## Examples
66

7-
- An input of 15 with [1, 5, 10, 25, 100] should return one nickel (5) and one dime (10) or [5, 10]
8-
- An input of 40 with [1, 5, 10, 25, 100] should return one nickel (5) and one dime (10) and one quarter (25) or [5, 10, 25]
9-
10-
## Edge cases
11-
12-
- Does your algorithm work for any given set of coins?
13-
- Can you ask for negative change?
14-
- Can you ask for a change value smaller than the smallest coin value?
7+
- An amount of 15 with available coin values [1, 5, 10, 25, 100] should return one coin of value 5 and one coin of value 10, or [5, 10].
8+
- An amount of 40 with available coin values [1, 5, 10, 25, 100] should return one coin of value 5, one coin of value 10, and one coin of value 25, or [5, 10, 25].
Lines changed: 26 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,26 @@
1+
# Introduction
2+
3+
In the mystical village of Coinholt, you stand behind the counter of your bakery, arranging a fresh batch of pastries.
4+
The door creaks open, and in walks Denara, a skilled merchant with a keen eye for quality goods.
5+
After a quick meal, she slides a shimmering coin across the counter, representing a value of 100 units.
6+
7+
You smile, taking the coin, and glance at the total cost of the meal: 88 units.
8+
That means you need to return 12 units in change.
9+
10+
Denara holds out her hand expectantly.
11+
"Just give me the fewest coins," she says with a smile.
12+
"My pouch is already full, and I don't want to risk losing them on the road."
13+
14+
You know you have a few options.
15+
"We have Lumis (worth 10 units), Viras (worth 5 units), and Zenth (worth 2 units) available for change."
16+
17+
You quickly calculate the possibilities in your head:
18+
19+
- one Lumis (1 × 10 units) + one Zenth (1 × 2 units) = 2 coins total
20+
- two Viras (2 × 5 units) + one Zenth (1 × 2 units) = 3 coins total
21+
- six Zenth (6 × 2 units) = 6 coins total
22+
23+
"The best choice is two coins: one Lumis and one Zenth," you say, handing her the change.
24+
25+
Denara smiles, clearly impressed.
26+
"As always, you've got it right."
Lines changed: 1 addition & 27 deletions
Original file line numberDiff line numberDiff line change
@@ -1,29 +1,3 @@
11
# Instructions
22

3-
The Collatz Conjecture or 3x+1 problem can be summarized as follows:
4-
5-
Take any positive integer n.
6-
If n is even, divide n by 2 to get n / 2.
7-
If n is odd, multiply n by 3 and add 1 to get 3n + 1.
8-
Repeat the process indefinitely.
9-
The conjecture states that no matter which number you start with, you will always reach 1 eventually.
10-
11-
Given a number n, return the number of steps required to reach 1.
12-
13-
## Examples
14-
15-
Starting with n = 12, the steps would be as follows:
16-
17-
0. 12
18-
1. 6
19-
2. 3
20-
3. 10
21-
4. 5
22-
5. 16
23-
6. 8
24-
7. 4
25-
8. 2
26-
9. 1
27-
28-
Resulting in 9 steps.
29-
So for input n = 12, the return value would be 9.
3+
Given a positive integer, return the number of steps it takes to reach 1 according to the rules of the Collatz Conjecture.
Lines changed: 28 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,28 @@
1+
# Introduction
2+
3+
One evening, you stumbled upon an old notebook filled with cryptic scribbles, as though someone had been obsessively chasing an idea.
4+
On one page, a single question stood out: **Can every number find its way to 1?**
5+
It was tied to something called the **Collatz Conjecture**, a puzzle that has baffled thinkers for decades.
6+
7+
The rules were deceptively simple.
8+
Pick any positive integer.
9+
10+
- If it's even, divide it by 2.
11+
- If it's odd, multiply it by 3 and add 1.
12+
13+
Then, repeat these steps with the result, continuing indefinitely.
14+
15+
Curious, you picked number 12 to test and began the journey:
16+
17+
12 ➜ 6 ➜ 3 ➜ 10 ➜ 5 ➜ 16 ➜ 8 ➜ 4 ➜ 2 ➜ 1
18+
19+
Counting from the second number (6), it took 9 steps to reach 1, and each time the rules repeated, the number kept changing.
20+
At first, the sequence seemed unpredictable — jumping up, down, and all over.
21+
Yet, the conjecture claims that no matter the starting number, we'll always end at 1.
22+
23+
It was fascinating, but also puzzling.
24+
Why does this always seem to work?
25+
Could there be a number where the process breaks down, looping forever or escaping into infinity?
26+
The notebook suggested solving this could reveal something profound — and with it, fame, [fortune][collatz-prize], and a place in history awaits whoever could unlock its secrets.
27+
28+
[collatz-prize]: https://mathprize.net/posts/collatz-conjecture/

exercises/practice/collatz-conjecture/.meta/config.json

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -23,6 +23,6 @@
2323
]
2424
},
2525
"blurb": "Calculate the number of steps to reach 1 using the Collatz conjecture.",
26-
"source": "An unsolved problem in mathematics named after mathematician Lothar Collatz",
27-
"source_url": "https://en.wikipedia.org/wiki/3x_%2B_1_problem"
26+
"source": "Wikipedia",
27+
"source_url": "https://en.wikipedia.org/wiki/Collatz_conjecture"
2828
}

exercises/practice/eliuds-eggs/.docs/introduction.md

Lines changed: 33 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -12,36 +12,54 @@ The position information encoding is calculated as follows:
1212
2. Convert the number from binary to decimal.
1313
3. Show the result on the display.
1414

15-
Example 1:
15+
## Example 1
16+
17+
![Seven individual nest boxes arranged in a row whose first, third, fourth and seventh nests each have a single egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-coop.svg)
1618

1719
```text
18-
Chicken Coop:
1920
_ _ _ _ _ _ _
2021
|E| |E|E| | |E|
22+
```
23+
24+
### Resulting Binary
25+
26+
![1011001](https://assets.exercism.org/images/exercises/eliuds-eggs/example-1-binary.svg)
27+
28+
```text
29+
_ _ _ _ _ _ _
30+
|1|0|1|1|0|0|1|
31+
```
2132

22-
Resulting Binary:
23-
1 0 1 1 0 0 1
33+
### Decimal number on the display
2434

25-
Decimal number on the display:
2635
89
2736

28-
Actual eggs in the coop:
37+
### Actual eggs in the coop
38+
2939
4
40+
41+
## Example 2
42+
43+
![Seven individual nest boxes arranged in a row where only the fourth nest has an egg.](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-coop.svg)
44+
45+
```text
46+
_ _ _ _ _ _ _
47+
| | | |E| | | |
3048
```
3149

32-
Example 2:
50+
### Resulting Binary
51+
52+
![0001000](https://assets.exercism.org/images/exercises/eliuds-eggs/example-2-binary.svg)
3353

3454
```text
35-
Chicken Coop:
36-
_ _ _ _ _ _ _ _
37-
| | | |E| | | | |
55+
_ _ _ _ _ _ _
56+
|0|0|0|1|0|0|0|
57+
```
3858

39-
Resulting Binary:
40-
0 0 0 1 0 0 0 0
59+
### Decimal number on the display
4160

42-
Decimal number on the display:
4361
16
4462

45-
Actual eggs in the coop:
63+
### Actual eggs in the coop
64+
4665
1
47-
```

exercises/practice/hamming/.docs/instructions.md

Lines changed: 0 additions & 11 deletions
Original file line numberDiff line numberDiff line change
@@ -2,15 +2,6 @@
22

33
Calculate the Hamming distance between two DNA strands.
44

5-
Your body is made up of cells that contain DNA.
6-
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
7-
In fact, the average human body experiences about 10 quadrillion cell divisions in a lifetime!
8-
9-
When cells divide, their DNA replicates too.
10-
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
11-
If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred.
12-
This is known as the "Hamming distance".
13-
145
We read DNA using the letters C, A, G and T.
156
Two strands might look like this:
167

@@ -20,8 +11,6 @@ Two strands might look like this:
2011

2112
They have 7 differences, and therefore the Hamming distance is 7.
2213

23-
The Hamming distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)
24-
2514
## Implementation notes
2615

2716
The Hamming distance is only defined for sequences of equal length, so an attempt to calculate it between sequences of different lengths should not work.

0 commit comments

Comments
 (0)