-
-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy patheasing.c
269 lines (236 loc) · 6.19 KB
/
easing.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
//
// easing.c
//
// Copyright (c) 2011, Auerhaus Development, LLC
//
// This program is free software. It comes without any warranty, to
// the extent permitted by applicable law. You can redistribute it
// and/or modify it under the terms of the Do What The Fuck You Want
// To Public License, Version 2, as published by Sam Hocevar. See
// http://sam.zoy.org/wtfpl/COPYING for more details.
//
#include <math.h>
#include "easing.h"
// Modeled after the line y = x
AHFloat LinearInterpolation(AHFloat p)
{
return p;
}
// Modeled after the parabola y = x^2
AHFloat QuadraticEaseIn(AHFloat p)
{
return p * p;
}
// Modeled after the parabola y = -x^2 + 2x
AHFloat QuadraticEaseOut(AHFloat p)
{
return -(p * (p - 2));
}
// Modeled after the piecewise quadratic
// y = (1/2)((2x)^2) ; [0, 0.5)
// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]
AHFloat QuadraticEaseInOut(AHFloat p)
{
if (p < 0.5) {
return 2 * p * p;
} else {
return (-2 * p * p) + (4 * p) - 1;
}
}
// Modeled after the cubic y = x^3
AHFloat CubicEaseIn(AHFloat p)
{
return p * p * p;
}
// Modeled after the cubic y = (x - 1)^3 + 1
AHFloat CubicEaseOut(AHFloat p)
{
AHFloat f = (p - 1);
return f * f * f + 1;
}
// Modeled after the piecewise cubic
// y = (1/2)((2x)^3) ; [0, 0.5)
// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]
AHFloat CubicEaseInOut(AHFloat p)
{
if (p < 0.5) {
return 4 * p * p * p;
} else {
AHFloat f = ((2 * p) - 2);
return 0.5f * f * f * f + 1;
}
}
// Modeled after the quartic x^4
AHFloat QuarticEaseIn(AHFloat p)
{
return p * p * p * p;
}
// Modeled after the quartic y = 1 - (x - 1)^4
AHFloat QuarticEaseOut(AHFloat p)
{
AHFloat f = (p - 1);
return f * f * f * (1 - p) + 1;
}
// Modeled after the piecewise quartic
// y = (1/2)((2x)^4) ; [0, 0.5)
// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]
AHFloat QuarticEaseInOut(AHFloat p)
{
if (p < 0.5) {
return 8 * p * p * p * p;
} else {
AHFloat f = (p - 1);
return -8 * f * f * f * f + 1;
}
}
// Modeled after the quintic y = x^5
AHFloat QuinticEaseIn(AHFloat p)
{
return p * p * p * p * p;
}
// Modeled after the quintic y = (x - 1)^5 + 1
AHFloat QuinticEaseOut(AHFloat p)
{
AHFloat f = (p - 1);
return f * f * f * f * f + 1;
}
// Modeled after the piecewise quintic
// y = (1/2)((2x)^5) ; [0, 0.5)
// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]
AHFloat QuinticEaseInOut(AHFloat p)
{
if (p < 0.5) {
return 16 * p * p * p * p * p;
} else {
AHFloat f = ((2 * p) - 2);
return 0.5f * f * f * f * f * f + 1;
}
}
// Modeled after quarter-cycle of sine wave
AHFloat SineEaseIn(AHFloat p)
{
return (AHFloat)sin((p - 1) * M_PI_2) + 1;
}
// Modeled after quarter-cycle of sine wave (different phase)
AHFloat SineEaseOut(AHFloat p)
{
return (AHFloat)sin(p * M_PI_2);
}
// Modeled after half sine wave
AHFloat SineEaseInOut(AHFloat p)
{
return (AHFloat)(0.5 * (1 - cos(p * M_PI)));
}
// Modeled after shifted quadrant IV of unit circle
AHFloat CircularEaseIn(AHFloat p)
{
return (AHFloat)(1 - sqrt(1 - (p * p)));
}
// Modeled after shifted quadrant II of unit circle
AHFloat CircularEaseOut(AHFloat p)
{
return (AHFloat)sqrt((2 - p) * p);
}
// Modeled after the piecewise circular function
// y = (1/2)(1 - sqrt(1 - 4x^2)) ; [0, 0.5)
// y = (1/2)(sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]
AHFloat CircularEaseInOut(AHFloat p)
{
if (p < 0.5) {
return (AHFloat)(0.5 * (1 - sqrt(1 - 4 * (p * p))));
} else {
return (AHFloat)(0.5 * (sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1));
}
}
// Modeled after the exponential function y = 2^(10(x - 1))
AHFloat ExponentialEaseIn(AHFloat p)
{
return (AHFloat)((p == 0.0) ? p : pow(2, 10 * (p - 1)));
}
// Modeled after the exponential function y = -2^(-10x) + 1
AHFloat ExponentialEaseOut(AHFloat p)
{
return (AHFloat)((p == 1.0) ? p : 1 - pow(2, -10 * p));
}
// Modeled after the piecewise exponential
// y = (1/2)2^(10(2x - 1)) ; [0,0.5)
// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]
AHFloat ExponentialEaseInOut(AHFloat p)
{
if (p == 0.0 || p == 1.0)
return p;
if (p < 0.5) {
return (AHFloat)(0.5 * pow(2, (20 * p) - 10));
} else {
return (AHFloat)(-0.5 * pow(2, (-20 * p) + 10) + 1);
}
}
// Modeled after the damped sine wave y = sin(13pi/2*x)*pow(2, 10 * (x - 1))
AHFloat ElasticEaseIn(AHFloat p)
{
return (AHFloat)(sin(13 * M_PI_2 * p) * pow(2, 10 * (p - 1)));
}
// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*pow(2, -10x) + 1
AHFloat ElasticEaseOut(AHFloat p)
{
return (AHFloat)(sin(-13 * M_PI_2 * (p + 1)) * pow(2, -10 * p) + 1);
}
// Modeled after the piecewise exponentially-damped sine wave:
// y = (1/2)*sin(13pi/2*(2*x))*pow(2, 10 * ((2*x) - 1)) ; [0,0.5)
// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*pow(2,-10(2*x-1)) + 2) ; [0.5, 1]
AHFloat ElasticEaseInOut(AHFloat p)
{
if (p < 0.5) {
return (AHFloat)(0.5 * sin(13 * M_PI_2 * (2 * p)) * pow(2, 10 * ((2 * p) - 1)));
} else {
return (AHFloat)(0.5 * (sin(-13 * M_PI_2 * ((2 * p - 1) + 1)) * pow(2, -10 * (2 * p - 1)) + 2));
}
}
// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)
AHFloat BackEaseIn(AHFloat p)
{
return (AHFloat)(p * p * p - p * sin(p * M_PI));
}
// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))
AHFloat BackEaseOut(AHFloat p)
{
AHFloat f = (1 - p);
return (AHFloat)(1 - (f * f * f - f * sin(f * M_PI)));
}
// Modeled after the piecewise overshooting cubic function:
// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi)) ; [0, 0.5)
// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]
AHFloat BackEaseInOut(AHFloat p)
{
if (p < 0.5) {
AHFloat f = 2 * p;
return (AHFloat)(0.5 * (f * f * f - f * sin(f * M_PI)));
} else {
AHFloat f = (1 - (2 * p - 1));
return (AHFloat)(0.5 * (1 - (f * f * f - f * sin(f * M_PI))) + 0.5);
}
}
AHFloat BounceEaseIn(AHFloat p)
{
return 1 - BounceEaseOut(1 - p);
}
AHFloat BounceEaseOut(AHFloat p)
{
if (p < 4 / 11.0) {
return (121 * p * p) / 16.0f;
} else if (p < 8 / 11.0) {
return (363 / 40.0f * p * p) - (99 / 10.0f * p) + 17 / 5.0f;
} else if (p < 9 / 10.0) {
return (4356 / 361.0f * p * p) - (35442 / 1805.0f * p) + 16061 / 1805.0f;
} else {
return (54 / 5.0f * p * p) - (513 / 25.0f * p) + 268 / 25.0f;
}
}
AHFloat BounceEaseInOut(AHFloat p)
{
if (p < 0.5) {
return 0.5f * BounceEaseIn(p * 2);
} else {
return 0.5f * BounceEaseOut(p * 2 - 1) + 0.5f;
}
}