diff --git a/mdit_py_plugins/dollarmath/index.py b/mdit_py_plugins/dollarmath/index.py
index acfd83f..b5a6b68 100644
--- a/mdit_py_plugins/dollarmath/index.py
+++ b/mdit_py_plugins/dollarmath/index.py
@@ -100,7 +100,7 @@ def render_math_inline_double(
env: EnvType,
) -> str:
content = _renderer(str(tokens[idx].content).strip(), {"display_mode": True})
- return f'
{content}
'
+ return f'{content}
'
def render_math_block(
self: RendererProtocol,
diff --git a/tests/fixtures/dollar_math.md b/tests/fixtures/dollar_math.md
index 08a2e90..4c940a5 100644
--- a/tests/fixtures/dollar_math.md
+++ b/tests/fixtures/dollar_math.md
@@ -516,21 +516,21 @@ Inline double-dollar start:
.
$$a=1$$ b
.
-a=1
b
+a=1
b
.
Inline double-dollar end:
.
a $$a=1$$
.
-a
a=1
+a
a=1
.
Inline double-dollar enclosed:
.
a $$a=1$$ (1) b
.
-a
a=1
(1) b
+a
a=1
(1) b
.
Inline double-dollar, escaped:
@@ -549,7 +549,7 @@ $$
i.e., $[\alpha \bar{X}, \infty)$ is a lower 1-sided $1-\alpha$ confidence bound for $\mu$.
.
Hence, for \alpha \in (0, 1),
-
\mathbb P (\alpha \bar{X} \ge \mu) \le \alpha;
+\mathbb P (\alpha \bar{X} \ge \mu) \le \alpha;
i.e., [\alpha \bar{X}, \infty) is a lower 1-sided 1-\alpha confidence bound for \mu.
.