diff --git a/mdit_py_plugins/dollarmath/index.py b/mdit_py_plugins/dollarmath/index.py index acfd83f..b5a6b68 100644 --- a/mdit_py_plugins/dollarmath/index.py +++ b/mdit_py_plugins/dollarmath/index.py @@ -100,7 +100,7 @@ def render_math_inline_double( env: EnvType, ) -> str: content = _renderer(str(tokens[idx].content).strip(), {"display_mode": True}) - return f'
{content}
' + return f'
{content}
' def render_math_block( self: RendererProtocol, diff --git a/tests/fixtures/dollar_math.md b/tests/fixtures/dollar_math.md index 08a2e90..4c940a5 100644 --- a/tests/fixtures/dollar_math.md +++ b/tests/fixtures/dollar_math.md @@ -516,21 +516,21 @@ Inline double-dollar start: . $$a=1$$ b . -

a=1
b

+

a=1
b

. Inline double-dollar end: . a $$a=1$$ . -

a

a=1

+

a

a=1

. Inline double-dollar enclosed: . a $$a=1$$ (1) b . -

a

a=1
(1) b

+

a

a=1
(1) b

. Inline double-dollar, escaped: @@ -549,7 +549,7 @@ $$ i.e., $[\alpha \bar{X}, \infty)$ is a lower 1-sided $1-\alpha$ confidence bound for $\mu$. .

Hence, for \alpha \in (0, 1), -

\mathbb P (\alpha \bar{X} \ge \mu) \le \alpha;
+
\mathbb P (\alpha \bar{X} \ge \mu) \le \alpha;
i.e., [\alpha \bar{X}, \infty) is a lower 1-sided 1-\alpha confidence bound for \mu.

.