forked from yulequan/face-alignment-in-3000fps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLBFRegressor.h
executable file
·89 lines (80 loc) · 3.79 KB
/
LBFRegressor.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
//
// LBFRegressor.h
// myopencv
//
// Created by lequan on 1/24/15.
// Copyright (c) 2015 lequan. All rights reserved.
//
#ifndef __myopencv__LBFRegressor__
#define __myopencv__LBFRegressor__
#include "RandomForest.h"
#include "liblinear/linear.h"
class LBFRegressor{
public:
std::vector<RandomForest> RandomForest_;
std::vector<std::vector<struct model*> > Models_;
cv::Mat_<double> mean_shape_;
std::vector<cv::Mat_<double> > shapes_residual_;
int max_numstage_;
public:
LBFRegressor(){
max_numstage_ = global_params.max_numstage;
RandomForest_.resize(max_numstage_);
Models_.resize(max_numstage_);
}
~LBFRegressor(){
}
void Read(std::ifstream& fin);
void Write(std::ofstream& fout);
void Load(std::string path);
void Save(std::string path);
struct feature_node ** DeriveBinaryFeat(const RandomForest& randf,
const std::vector<cv::Mat_<uchar> >& images,
const std::vector<cv::Mat_<double> >& current_shapes,
const std::vector<BoundingBox> & bounding_boxs);
void ReleaseFeatureSpace(struct feature_node ** binfeatures,
int num_train_sample);
int GetCodefromTree(const Tree& tree,
const cv::Mat_<uchar>& image,
const cv::Mat_<double>& shapes,
const BoundingBox& bounding_box,
const cv::Mat_<double>& rotation,
const double scale);
void GetCodefromRandomForest(struct feature_node *binfeature,
const int index,
const cv::vector<Tree>& rand_forest,
const cv::Mat_<uchar>& image,
const cv::Mat_<double>& shape,
const BoundingBox& bounding_box,
const cv::Mat_<double>& rotation,
const double scale);
void GlobalRegression(struct feature_node **binfeatures,
const std::vector<cv::Mat_<double> >& shapes_residual,
std::vector<cv::Mat_<double> >& current_shapes,
const std::vector<BoundingBox> & bounding_boxs,
const cv::Mat_<double>& mean_shape,
//Mat_<double>& W,
std::vector<struct model*>& models,
int num_feature,
int num_train_sample,
int stage);
void GlobalPrediction(struct feature_node**,
std::vector<cv::Mat_<double> >& current_shapes,
const std::vector<BoundingBox> & bounding_boxs,
int stage);
void Train(const std::vector<cv::Mat_<uchar> >& images,
const std::vector<cv::Mat_<double> >& ground_truth_shapes,
const std::vector<BoundingBox> & bounding_boxs);
std::vector<cv::Mat_<double> > Predict(const std::vector<cv::Mat_<uchar> >& images,
const std::vector<BoundingBox>& bounding_boxs,
const std::vector<cv::Mat_<double> >& ground_truth_shapes,
int initial_num);
cv::Mat_<double> Predict(const cv::Mat_<uchar>& image,
const BoundingBox& bounding_box,
int initial_num);
void WriteGlobalParam(std::ofstream& fout);
void ReadGlobalParam(std::ifstream& fin);
void WriteRegressor(std::ofstream& fout);
void ReadRegressor(std::ifstream& fin);
};
#endif