forked from yulequan/face-alignment-in-3000fps
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLBF.cpp
executable file
·136 lines (123 loc) · 4.24 KB
/
LBF.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
//
// LBF.cpp
// myopencv
//
// Created by lequan on 1/24/15.
// Copyright (c) 2015 lequan. All rights reserved.
//
#include "LBF.h"
#include "LBFRegressor.h"
using namespace std;
using namespace cv;
// parameters
Params global_params;
string modelPath ="./../../model_69/";
string dataPath = "./../../Datasets/";
string cascadeName = "haarcascade_frontalface_alt.xml";
void InitializeGlobalParam();
void PrintHelp();
int main( int argc, const char** argv ){
// double rs[3] = {0.4,0.15,0.08};
// for (int i=0;i<3;i++){
// Mat image = imread("/Users/lequan/workspace/LBF/Datasets/afw/437595409_1.jpg");
// string name1("/Users/lequan/workspace/LBF/Datasets/afw/437595409_1.pts");
// InitializeGlobalParam();
// Mat_<double> ground_truth_shape = LoadGroundTruthShape(name1);
// BoundingBox bbx = CalculateBoundingBox(ground_truth_shape);
// double r = rs[i]*bbx.height/2.0;
// int a[13]={18,22,37,40,23,27,43,46,31,49,55,52,58};
// for(int j = 0;j <13;j++){
// cout <<j<<endl;
// circle(image,Point2d(ground_truth_shape(a[j]-1,0),ground_truth_shape(a[j]-1,1)),r,Scalar(255,255,255),2,8,0);
// }
// imshow("result", image);
// waitKey(0);
// string name = "radius" + to_string(i)+".jpg";
// imwrite(name,image);
// }
//initialize parameters
if (argc > 1 && strcmp(argv[1],"TrainModel")==0){
InitializeGlobalParam();
}
else {
ReadGlobalParamFromFile(modelPath+"LBF.model");
}
// main process
if (argc==1){
PrintHelp();
}
else if(strcmp(argv[1],"TrainModel")==0){
vector<string> trainDataName;
// you need to modify this section according to your training dataset
trainDataName.push_back("afw");
trainDataName.push_back("helen");
trainDataName.push_back("lfpw");
TrainModel(trainDataName);
}
else if (strcmp(argv[1], "TestModel")==0){
vector<string> testDataName;
// you need to modify this section according to your training dataset
testDataName.push_back("ibug");
// testDataName.push_back("helen");
double MRSE = TestModel(testDataName);
}
else if (strcmp(argv[1], "Demo")==0){
if (argc == 2){
return FaceDetectionAndAlignment("");
}
else if(argc ==3){
return FaceDetectionAndAlignment(argv[2]);
}
}
else {
PrintHelp();
}
return 0;
}
// set the parameters when training models.
void InitializeGlobalParam(){
global_params.bagging_overlap = 0.4;
global_params.max_numtrees = 10;
global_params.max_depth = 5;
global_params.landmark_num = 68;
global_params.initial_num = 5;
global_params.max_numstage = 7;
double m_max_radio_radius[10] = {0.4,0.3,0.2,0.15, 0.12, 0.10, 0.08, 0.06, 0.06,0.05};
double m_max_numfeats[10] = {500, 500, 500, 300, 300, 200, 200,200,100,100};
for (int i=0;i<10;i++){
global_params.max_radio_radius[i] = m_max_radio_radius[i];
}
for (int i=0;i<10;i++){
global_params.max_numfeats[i] = m_max_numfeats[i];
}
global_params.max_numthreshs = 500;
}
void ReadGlobalParamFromFile(string path){
cout << "Loading GlobalParam..." << endl;
ifstream fin;
fin.open(path);
fin >> global_params.bagging_overlap;
fin >> global_params.max_numtrees;
fin >> global_params.max_depth;
fin >> global_params.max_numthreshs;
fin >> global_params.landmark_num;
fin >> global_params.initial_num;
fin >> global_params.max_numstage;
for (int i = 0; i< global_params.max_numstage; i++){
fin >> global_params.max_radio_radius[i];
}
for (int i = 0; i < global_params.max_numstage; i++){
fin >> global_params.max_numfeats[i];
}
cout << "Loading GlobalParam end"<<endl;
fin.close();
}
void PrintHelp(){
cout << "Useage:"<<endl;
cout << "1. train your own model: LBF.out TrainModel "<<endl;
cout << "2. test model on dataset: LBF.out TestModel"<<endl;
cout << "3. test model via a camera: LBF.out Demo "<<endl;
cout << "4. test model on a pic: LBF.out Demo xx.jpg"<<endl;
cout << "5. test model on pic set: LBF.out Demo Img_Path.txt"<<endl;
cout << endl;
}