-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathapp.py
440 lines (364 loc) Β· 17.6 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
import streamlit as st
from openai import OpenAI
import dotenv
import os
from PIL import Image
from audio_recorder_streamlit import audio_recorder
import base64
from io import BytesIO
import google.generativeai as genai
import random
import anthropic
dotenv.load_dotenv()
anthropic_models = [
"claude-3-5-sonnet-20240620"
]
google_models = [
"gemini-1.5-flash",
"gemini-1.5-pro",
]
openai_models = [
"gpt-4o",
"gpt-4-turbo",
"gpt-3.5-turbo-16k",
"gpt-4",
"gpt-4-32k",
]
# Function to convert the messages format from OpenAI and Streamlit to Gemini
def messages_to_gemini(messages):
gemini_messages = []
prev_role = None
for message in messages:
if prev_role and (prev_role == message["role"]):
gemini_message = gemini_messages[-1]
else:
gemini_message = {
"role": "model" if message["role"] == "assistant" else "user",
"parts": [],
}
for content in message["content"]:
if content["type"] == "text":
gemini_message["parts"].append(content["text"])
elif content["type"] == "image_url":
gemini_message["parts"].append(base64_to_image(content["image_url"]["url"]))
elif content["type"] == "video_file":
gemini_message["parts"].append(genai.upload_file(content["video_file"]))
elif content["type"] == "audio_file":
gemini_message["parts"].append(genai.upload_file(content["audio_file"]))
if prev_role != message["role"]:
gemini_messages.append(gemini_message)
prev_role = message["role"]
return gemini_messages
# Function to convert the messages format from OpenAI and Streamlit to Anthropic (the only difference is in the image messages)
def messages_to_anthropic(messages):
anthropic_messages = []
prev_role = None
for message in messages:
if prev_role and (prev_role == message["role"]):
anthropic_message = anthropic_messages[-1]
else:
anthropic_message = {
"role": message["role"] ,
"content": [],
}
if message["content"][0]["type"] == "image_url":
anthropic_message["content"].append(
{
"type": "image",
"source":{
"type": "base64",
"media_type": message["content"][0]["image_url"]["url"].split(";")[0].split(":")[1],
"data": message["content"][0]["image_url"]["url"].split(",")[1]
# f"data:{img_type};base64,{img}"
}
}
)
else:
anthropic_message["content"].append(message["content"][0])
if prev_role != message["role"]:
anthropic_messages.append(anthropic_message)
prev_role = message["role"]
return anthropic_messages
# Function to query and stream the response from the LLM
def stream_llm_response(model_params, model_type="openai", api_key=None):
response_message = ""
if model_type == "openai":
client = OpenAI(api_key=api_key)
for chunk in client.chat.completions.create(
model=model_params["model"] if "model" in model_params else "gpt-4o",
messages=st.session_state.messages,
temperature=model_params["temperature"] if "temperature" in model_params else 0.3,
max_tokens=4096,
stream=True,
):
chunk_text = chunk.choices[0].delta.content or ""
response_message += chunk_text
yield chunk_text
elif model_type == "google":
genai.configure(api_key=api_key)
model = genai.GenerativeModel(
model_name = model_params["model"],
generation_config={
"temperature": model_params["temperature"] if "temperature" in model_params else 0.3,
}
)
gemini_messages = messages_to_gemini(st.session_state.messages)
for chunk in model.generate_content(
contents=gemini_messages,
stream=True,
):
chunk_text = chunk.text or ""
response_message += chunk_text
yield chunk_text
elif model_type == "anthropic":
client = anthropic.Anthropic(api_key=api_key)
with client.messages.stream(
model=model_params["model"] if "model" in model_params else "claude-3-5-sonnet-20240620",
messages=messages_to_anthropic(st.session_state.messages),
temperature=model_params["temperature"] if "temperature" in model_params else 0.3,
max_tokens=4096,
) as stream:
for text in stream.text_stream:
response_message += text
yield text
st.session_state.messages.append({
"role": "assistant",
"content": [
{
"type": "text",
"text": response_message,
}
]})
# Function to convert file to base64
def get_image_base64(image_raw):
buffered = BytesIO()
image_raw.save(buffered, format=image_raw.format)
img_byte = buffered.getvalue()
return base64.b64encode(img_byte).decode('utf-8')
def file_to_base64(file):
with open(file, "rb") as f:
return base64.b64encode(f.read())
def base64_to_image(base64_string):
base64_string = base64_string.split(",")[1]
return Image.open(BytesIO(base64.b64decode(base64_string)))
def main():
# --- Page Config ---
st.set_page_config(
page_title="The OmniChat",
page_icon="π€",
layout="centered",
initial_sidebar_state="expanded",
)
# --- Header ---
st.html("""<h1 style="text-align: center; color: #6ca395;">π€ <i>The OmniChat</i> π¬</h1>""")
# --- Side Bar ---
with st.sidebar:
cols_keys = st.columns(2)
with cols_keys[0]:
default_openai_api_key = os.getenv("OPENAI_API_KEY") if os.getenv("OPENAI_API_KEY") is not None else "" # only for development environment, otherwise it should return None
with st.popover("π OpenAI"):
openai_api_key = st.text_input("Introduce your OpenAI API Key (https://platform.openai.com/)", value=default_openai_api_key, type="password")
with cols_keys[1]:
default_google_api_key = os.getenv("GOOGLE_API_KEY") if os.getenv("GOOGLE_API_KEY") is not None else "" # only for development environment, otherwise it should return None
with st.popover("π Google"):
google_api_key = st.text_input("Introduce your Google API Key (https://aistudio.google.com/app/apikey)", value=default_google_api_key, type="password")
default_anthropic_api_key = os.getenv("ANTHROPIC_API_KEY") if os.getenv("ANTHROPIC_API_KEY") is not None else ""
with st.popover("π Anthropic"):
anthropic_api_key = st.text_input("Introduce your Anthropic API Key (https://console.anthropic.com/)", value=default_anthropic_api_key, type="password")
# --- Main Content ---
# Checking if the user has introduced the OpenAI API Key, if not, a warning is displayed
if (openai_api_key == "" or openai_api_key is None or "sk-" not in openai_api_key) and (google_api_key == "" or google_api_key is None) and (anthropic_api_key == "" or anthropic_api_key is None):
st.write("#")
st.warning("β¬
οΈ Please introduce an API Key to continue...")
with st.sidebar:
st.write("#")
st.write("#")
st.video("https://www.youtube.com/watch?v=7i9j8M_zidA")
st.write("π[Medium Blog: OpenAI GPT-4o](https://medium.com/@enricdomingo/code-the-omnichat-app-integrating-gpt-4o-your-python-chatgpt-d399b90d178e)")
st.video("https://www.youtube.com/watch?v=1IQmWVFNQEs")
st.write("π[Medium Blog: Google Gemini](https://medium.com/@enricdomingo/how-i-add-gemini-1-5-pro-api-to-my-app-chat-with-videos-images-and-audios-f42171606143)")
st.video("https://www.youtube.com/watch?v=kXIOazjgV-8")
st.write("π[Medium Blog: Anthropic Claude 3.5](https://medium.com/p/7ec4623e2dac)")
else:
client = OpenAI(api_key=openai_api_key)
if "messages" not in st.session_state:
st.session_state.messages = []
# Displaying the previous messages if there are any
for message in st.session_state.messages:
with st.chat_message(message["role"]):
for content in message["content"]:
if content["type"] == "text":
st.write(content["text"])
elif content["type"] == "image_url":
st.image(content["image_url"]["url"])
elif content["type"] == "video_file":
st.video(content["video_file"])
elif content["type"] == "audio_file":
st.audio(content["audio_file"])
# Side bar model options and inputs
with st.sidebar:
st.divider()
available_models = [] + (anthropic_models if anthropic_api_key else []) + (google_models if google_api_key else []) + (openai_models if openai_api_key else [])
model = st.selectbox("Select a model:", available_models, index=0)
model_type = None
if model.startswith("gpt"): model_type = "openai"
elif model.startswith("gemini"): model_type = "google"
elif model.startswith("claude"): model_type = "anthropic"
with st.popover("βοΈ Model parameters"):
model_temp = st.slider("Temperature", min_value=0.0, max_value=2.0, value=0.3, step=0.1)
audio_response = st.toggle("Audio response", value=False)
if audio_response:
cols = st.columns(2)
with cols[0]:
tts_voice = st.selectbox("Select a voice:", ["alloy", "echo", "fable", "onyx", "nova", "shimmer"])
with cols[1]:
tts_model = st.selectbox("Select a model:", ["tts-1", "tts-1-hd"], index=1)
model_params = {
"model": model,
"temperature": model_temp,
}
def reset_conversation():
if "messages" in st.session_state and len(st.session_state.messages) > 0:
st.session_state.pop("messages", None)
st.button(
"ποΈ Reset conversation",
on_click=reset_conversation,
)
st.divider()
# Image Upload
if model in ["gpt-4o", "gpt-4-turbo", "gemini-1.5-flash", "gemini-1.5-pro", "claude-3-5-sonnet-20240620"]:
st.write(f"### **πΌοΈ Add an image{' or a video file' if model_type=='google' else ''}:**")
def add_image_to_messages():
if st.session_state.uploaded_img or ("camera_img" in st.session_state and st.session_state.camera_img):
img_type = st.session_state.uploaded_img.type if st.session_state.uploaded_img else "image/jpeg"
if img_type == "video/mp4":
# save the video file
video_id = random.randint(100000, 999999)
with open(f"video_{video_id}.mp4", "wb") as f:
f.write(st.session_state.uploaded_img.read())
st.session_state.messages.append(
{
"role": "user",
"content": [{
"type": "video_file",
"video_file": f"video_{video_id}.mp4",
}]
}
)
else:
raw_img = Image.open(st.session_state.uploaded_img or st.session_state.camera_img)
img = get_image_base64(raw_img)
st.session_state.messages.append(
{
"role": "user",
"content": [{
"type": "image_url",
"image_url": {"url": f"data:{img_type};base64,{img}"}
}]
}
)
cols_img = st.columns(2)
with cols_img[0]:
with st.popover("π Upload"):
st.file_uploader(
f"Upload an image{' or a video' if model_type == 'google' else ''}:",
type=["png", "jpg", "jpeg"] + (["mp4"] if model_type == "google" else []),
accept_multiple_files=False,
key="uploaded_img",
on_change=add_image_to_messages,
)
with cols_img[1]:
with st.popover("πΈ Camera"):
activate_camera = st.checkbox("Activate camera")
if activate_camera:
st.camera_input(
"Take a picture",
key="camera_img",
on_change=add_image_to_messages,
)
# Audio Upload
st.write("#")
st.write(f"### **π€ Add an audio{' (Speech To Text)' if model_type == 'openai' else ''}:**")
audio_prompt = None
audio_file_added = False
if "prev_speech_hash" not in st.session_state:
st.session_state.prev_speech_hash = None
speech_input = audio_recorder("Press to talk:", icon_size="3x", neutral_color="#6ca395", )
if speech_input and st.session_state.prev_speech_hash != hash(speech_input):
st.session_state.prev_speech_hash = hash(speech_input)
if model_type != "google":
transcript = client.audio.transcriptions.create(
model="whisper-1",
file=("audio.wav", speech_input),
)
audio_prompt = transcript.text
elif model_type == "google":
# save the audio file
audio_id = random.randint(100000, 999999)
with open(f"audio_{audio_id}.wav", "wb") as f:
f.write(speech_input)
st.session_state.messages.append(
{
"role": "user",
"content": [{
"type": "audio_file",
"audio_file": f"audio_{audio_id}.wav",
}]
}
)
audio_file_added = True
st.divider()
st.video("https://www.youtube.com/watch?v=7i9j8M_zidA")
st.write("π[Medium Blog: OpenAI GPT-4o](https://medium.com/@enricdomingo/code-the-omnichat-app-integrating-gpt-4o-your-python-chatgpt-d399b90d178e)")
st.video("https://www.youtube.com/watch?v=1IQmWVFNQEs")
st.write("π[Medium Blog: Google Gemini](https://medium.com/@enricdomingo/how-i-add-gemini-1-5-pro-api-to-my-app-chat-with-videos-images-and-audios-f42171606143)")
st.video("https://www.youtube.com/watch?v=kXIOazjgV-8")
st.write("π[Medium Blog: Anthropic Claude 3.5](https://medium.com/p/7ec4623e2dac)")
# Chat input
if prompt := st.chat_input("Hi! Ask me anything...") or audio_prompt or audio_file_added:
if not audio_file_added:
st.session_state.messages.append(
{
"role": "user",
"content": [{
"type": "text",
"text": prompt or audio_prompt,
}]
}
)
# Display the new messages
with st.chat_message("user"):
st.markdown(prompt)
else:
# Display the audio file
with st.chat_message("user"):
st.audio(f"audio_{audio_id}.wav")
with st.chat_message("assistant"):
model2key = {
"openai": openai_api_key,
"google": google_api_key,
"anthropic": anthropic_api_key,
}
st.write_stream(
stream_llm_response(
model_params=model_params,
model_type=model_type,
api_key=model2key[model_type]
)
)
# --- Added Audio Response (optional) ---
if audio_response:
response = client.audio.speech.create(
model=tts_model,
voice=tts_voice,
input=st.session_state.messages[-1]["content"][0]["text"],
)
audio_base64 = base64.b64encode(response.content).decode('utf-8')
audio_html = f"""
<audio controls autoplay>
<source src="data:audio/wav;base64,{audio_base64}" type="audio/mp3">
</audio>
"""
st.html(audio_html)
if __name__=="__main__":
main()