-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_1028.py
353 lines (294 loc) · 17.1 KB
/
train_1028.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import gc
import torch
import os
import random
import argparse
from pathlib import Path
from torch.utils.data import random_split
import numpy as np
import torch.optim as optim
import logging
from tqdm import tqdm
from network.polarsegformer import PolarSegFormer
from torch.utils.tensorboard import SummaryWriter
from dataloader_nuscenes.nusenes_dataset import collate_fn_BEV, My_nuscenes, get_scene_name, spherical_dataset
from network.lovasz_losses import lovasz_softmax
import warnings
from confusion_matrix import per_class_iu, fast_hist_crop,get_gpu_memory
warnings.filterwarnings("ignore")
def fast_hist(pred, label, n):
k = (label >= 0) & (label < n)
bin_count = np.bincount(
n * label[k].astype(int) + pred[k], minlength = n ** 2)
return bin_count[:n ** 2].reshape(n, n)
def SemKITTI2train(label): # label torch.Size([1, 480, 360, 32])
if isinstance(label, list):
return [SemKITTI2train_single(a) for a in label]
else:
return SemKITTI2train_single(label)
def SemKITTI2train_single(label):
return label - 1 # uint8 trick
def parse_args():
parser = argparse.ArgumentParser(description = 'PolarNuscenes')
parser.add_argument('-d', '--data_dir', default = 'data/nuscenes_moving_obstacle_detection')
parser.add_argument('-p', '--model_save_path', default = './SemKITTI_PolarSeg.pt')
parser.add_argument('-s', '--grid_size', nargs = '+', type = int, default = [480, 480, 32])
parser.add_argument('--train_batch_size', type = int, default = 1, help = 'batch size for training (default: 2)')
parser.add_argument('--val_batch_size', type = int, default = 1, help = 'batch size for validation (default: 2)')
parser.add_argument('--check_iter', type = int, default = 1)
parser.add_argument('--max_epoch', type = int, default = 10)
parser.add_argument('--log_dir', type = str, default = "runs/", help = 'Log path [default: None]')
return parser.parse_args()
SemKITTI_label_name = {0: 'background', 1: 'moving_vehicles', 2: 'moving_pedestrains'}
# BASE_dir = Path(__file__).resolve().parent # E://xiaomeng
# SCENE_dir = os.path.join(BASE_dir, 'data', 'nuscenes_moving_obstacle_detection')
# scene_list = get_scene_name(SCENE_dir) #重要的是 SCENE_dir,用参数喂了,--data_dir
def set_seed(seed = 1024):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def main():
set_seed()
args = parse_args()
logger = logging.getLogger("Model")
logger.setLevel(logging.INFO)
def log_string(*str):
logger.info(*str)
print(*str, end = " ")
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler('logs.txt')
file_handler.setLevel(logging.INFO)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
log_string('PARAMETER ...')
log_string(args)
data_path = args.data_dir
max_epoch = args.max_epoch
train_batch_size = args.train_batch_size
val_batch_size = args.val_batch_size
check_iter = args.check_iter
model_save_path = args.model_save_path
compression_model = args.grid_size[2] # 32 GRID SIZE 的最后一维
grid_size = args.grid_size # [480, 360, 32]
# pytorch_device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
pytorch_device = torch.device("cuda:0" )
"""
gpu_memory = get_gpu_memory()
if not gpu_memory:
print("gpu free memory: {}".format(gpu_memory))
gpu_list = np.argsort(gpu_memory)[::-1]
gpu_list_str = ','.join(map(str, gpu_list))
os.environ.setdefault("CUDA_VISIBLE_DEVICES", gpu_list_str)
pytorch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
"""
tb_writer= SummaryWriter('runs/')
unique_label = np.asarray(sorted(list(SemKITTI_label_name.keys())))[
1:] - 1 # 2 list [ 0 1 ]
unique_label_str = [SemKITTI_label_name[x] for x in unique_label + 1] # 取出除了背景以外的 类别名字
# max_pt_per_encode 每个体素最大包含点云数
# my_BEV_model = BEV_Unet(n_class = len(unique_label), n_height = compression_model, input_batch_norm = True,
# dropout = 0.5, circular_padding = True)
my_model = PolarSegFormer(n_class = len(unique_label), grid_size = grid_size, max_pt_per_encode = 256,
kernal_size = 1, fea_compre = compression_model)
if os.path.exists(model_save_path):
my_model.load_state_dict(torch.load(model_save_path))
my_model.to(pytorch_device)
optimizer = optim.Adam(my_model.parameters())
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size = 10, gamma = 0.1)
scheduler_lr = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max = 10, eta_min = 0.)
loss_fun = torch.nn.CrossEntropyLoss(ignore_index = 255)
# loss_fun = torch.nn.CrossEntropyLoss()
# prepare dataset 1当前帧
scene_list = get_scene_name(data_path)
pt_dataset = My_nuscenes(data_path, scene_list)
# print( pt_dataset) 试一下清显存
del scene_list
gc.collect()
all_dataset = spherical_dataset(pt_dataset, grid_size = grid_size, flip_aug = True, ignore_label = 0,
rotate_aug = True, fixed_volume_space = True)
train_size = int(len(all_dataset) * 0.6)
test_size = int(len(all_dataset) * 0.2)
val_size = len(all_dataset) - train_size - test_size
train_dataset, test_dataset, val_dataset = torch.utils.data.random_split(all_dataset,
[train_size, test_size, val_size])
del train_size,val_size,test_size
train_dataset_loader = torch.utils.data.DataLoader(dataset = train_dataset, batch_size = train_batch_size,
collate_fn = collate_fn_BEV,
shuffle = True, num_workers = 0)
"""# test和 val的 collate_fn_BEV 需要换,还没写,哈哈哈哈。。。 不要忘了!!"""
test_dataset_loader = torch.utils.data.DataLoader(dataset = test_dataset, batch_size = train_batch_size,
collate_fn = collate_fn_BEV,
shuffle = True, num_workers = 0)
val_dataset_loader = torch.utils.data.DataLoader(dataset = val_dataset, batch_size = train_batch_size,
collate_fn = collate_fn_BEV,
shuffle = True, num_workers = 0)
log_string("The number of training data is: %d" % len(train_dataset))
log_string("The number of test data is: %d" % len(val_dataset))
# training
epoch = 0
best_val_miou = 0
start_training = False
my_model.train()
global_iter = 0
exce_counter = 0
for epoch in range(max_epoch):
log_string('**** Epoch %d (%d/%s) ****' % (global_iter + 1, epoch + 1, max_epoch))
train_loss = []
loss_list = []
hist_list = []
train_pa_acc = 0
pbar = tqdm(total = len(train_dataset_loader))
for i_iter, data in enumerate(train_dataset_loader):
# 是data2stack_1, label2stack_1, grid_ind_stack_1, point_label_1, xyz_1(8wei),后面3都是list
data_0 = data[0] # 前一帧
data_1 = data[1] # 当前帧
_, train_vox_label_0, train_grid_0, _, train_pt_fea_0 = data_0
_, train_vox_label_1, train_grid_1, train_pt_labs_1, train_pt_fea_1 = data_1
# print( train_pt_fea_0[0].shape)
train_vox_label_0 = SemKITTI2train(train_vox_label_0) # 全255
# train_pt_labs_0 = SemKITTI2train(train_pt_labs_0) # list label[ npoint 类别] 0 1 2-> -1 0 1
# 转换数据类型
train_pt_fea_ten_0 = [torch.from_numpy(i).type(torch.FloatTensor).to( pytorch_device) for i in
train_pt_fea_0]
# train_grid: [nponint,3] ,trian_grid_ten: 不要z了
# 放到cuda gpu里
train_grid_ten_0 = [torch.from_numpy(i[:, :2]).to( pytorch_device) for i in train_grid_0]
train_vox_ten_0 = [torch.from_numpy(i) for i in train_grid_0]
point_label_tensor_0 = train_vox_label_0.type(torch.IntTensor)
del point_label_tensor_0 ,train_vox_ten_0
gc.collect()
train_vox_label_1 = SemKITTI2train(train_vox_label_1) # 全255 # 转换数据类型
train_pt_labs_1 = SemKITTI2train(train_pt_labs_1) # 只用1就可以了预测现在的嘛,省个变量
train_pt_fea_ten_1 = [torch.from_numpy(i).type(torch.FloatTensor).to( pytorch_device) for i in train_pt_fea_1]
# train_grid: [nponint,3] ,trian_grid_ten: 不要z了
train_grid_ten_1 = [torch.from_numpy(i[:, :2]).to( pytorch_device) for i in train_grid_1]
train_vox_ten_1 = [torch.from_numpy(i).to( pytorch_device) for i in train_grid_1]
point_label_tensor_1 = train_vox_label_1.type(torch.LongTensor).to( pytorch_device) # 计算loss
# print("point_label_tensor_1的设备:", point_label_tensor_1.get_device())
# forward + backward + optimize
# train_pt_fea_ten (npoints,9), train_grid_ten ( torch.Size([113316, 2])), 这俩均被[]list包了一层
outputs = my_model(train_pt_fea_ten_0, train_grid_ten_0, train_pt_fea_ten_1, train_grid_ten_1)
# print( outputs.shape) #[1, 2, 480, 360, 32])
# loss_fun:是交叉熵
loss = 0.001 * lovasz_softmax(torch.nn.functional.softmax(outputs), point_label_tensor_1,
ignore = 0) + loss_fun(outputs, point_label_tensor_1)
# loss_0 = lovasz_softmax(torch.nn.functional.softmax(outputs_0), point_label_tensor_0, ignore = 0)
# print('--l0ss---', loss.item())
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
optimizer.zero_grad()
loss.backward()
optimizer.step()
loss_list.append(loss.item())
pbar.update(1)
start_training = True
global_iter += 1
tb_writer.add_scalars("Loss", {"Train": loss}, global_iter)
# tb_writer.add_scalars("Loss_Train",loss, global_iter) # 放到gpu就需要 loss.item(),暂时去掉
# 评估一哈
train_loss.append( loss.detach().cpu().numpy() )
outputs = torch.argmax(outputs, dim = 1)
outputs = outputs.cpu().detach().numpy()
for count, i_val_grid in enumerate(train_grid_1):
hist_list.append(fast_hist_crop(outputs[
count, train_grid_1[count][:, 0], train_grid_1[count][:, 1],
train_grid_1[count][:, 2]], train_pt_labs_1[count],
unique_label))
confusion_matrix = sum(hist_list)
"""train 的 iou和 miou"""
# iou = per_class_iu(confusion_matrix)
# print('per class iou: -------')
# for class_name, class_iou in zip(unique_label_str, iou):
# print('%s : %.2f%%' % (class_name, class_iou * 100))
# train_miou = np.nanmean(iou) * 100
# acc
train_pa_acc += np.diag(sum(hist_list)) / (confusion_matrix.sum(1) + 1e-10)
del train_vox_label_1, train_grid_1, train_pt_fea_ten_0, train_grid_ten_0,point_label_tensor_1
gc.collect()
# print("train----------", train_pa_acc / len(train_dataset_loader))# [acc1,acc2]
log_string('Training PA accuracy' , train_pa_acc / len(train_dataset_loader))
log_string('Training mean loss: %f' % (np.mean(train_loss)))
scheduler_lr.step()
pbar.close()
epoch += 1
#
if epoch % check_iter == 0:
my_model.eval()
val_hist_list = []
val_loss = []
val_pa_acc=0
with torch.no_grad():
for i_iter, data in enumerate(val_dataset_loader):
# 是data2stack_1, label2stack_1, grid_ind_stack_1, point_label_1, xyz_1(8wei),后面3都是list
data_0 = data[0] # 前一帧
data_1 = data[1] # 当前帧
_, val_vox_label_0, val_grid_0, _, val_pt_fea_0 = data_0
_, val_vox_label_1, val_grid_1, val_pt_labs_1, val_pt_fea_1 = data_1
# print( train_pt_fea_0[0].shape)
val_vox_label_0 = SemKITTI2train(val_vox_label_0) # 全255
# train_pt_labs_0 = SemKITTI2train(train_pt_labs_0) # list label[ npoint 类别] 0 1 2-> -1 0 1
# 转换数据类型 原来是 FolatTensor
val_pt_fea_ten_0 = [torch.from_numpy(i).type(torch.FloatTensor).to( pytorch_device) for i in
val_pt_fea_0]
# 放到cuda gpu里
val_grid_ten_0 = [torch.from_numpy(i[:, :2]).to(pytorch_device ) for i in val_grid_0]
val_vox_ten_0 = [torch.from_numpy(i) for i in val_grid_0]
val_point_label_tensor_0 = val_vox_label_0.type(torch.LongTensor)
del val_vox_ten_0
gc.collect()
val_vox_label_1 = SemKITTI2train(val_vox_label_1) # 全255 # 转换数据类型
val_pt_labs_1 = SemKITTI2train(val_pt_labs_1) # 只用1就可以了预测现在的嘛,省个变量
val_pt_fea_ten_1 = [torch.from_numpy(i).type(torch.FloatTensor).to( pytorch_device) for i in val_pt_fea_1]
# train_grid: [nponint,3] ,trian_grid_ten: 不要z了
val_grid_ten_1 = [torch.from_numpy(i[:, :2]).to( pytorch_device) for i in val_grid_1]
val_vox_ten_1 = [torch.from_numpy(i).to( pytorch_device) for i in val_grid_1]
val_point_label_tensor_1 = val_vox_label_1.type(torch.LongTensor).to( pytorch_device) # 原来是longTensor
# forward + backward + optimize
# train_pt_fea_ten (npoints,9), train_grid_ten ( torch.Size([113316, 2])), 这俩均被[]list包了一层
predict_labels = my_model(val_pt_fea_ten_0, val_grid_ten_0, val_pt_fea_ten_1, val_grid_ten_1)
# print( outputs.shape) #[1, 2, 480, 360, 32])
# loss_fun:是交叉熵
loss = 0.001 * lovasz_softmax(torch.nn.functional.softmax(predict_labels).detach(), val_point_label_tensor_1,
ignore = 0) + loss_fun(predict_labels.detach(), val_point_label_tensor_1)
val_loss.append(loss.detach().cpu().numpy() )
predict_labels = torch.argmax(predict_labels, dim = 1)
predict_labels = predict_labels.cpu().detach().numpy()
for count, i_val_grid in enumerate(val_grid_1):
val_hist_list.append(fast_hist_crop(predict_labels[
count, val_grid_1[count][:, 0], val_grid_1[count][:, 1],
val_grid_1[count][:, 2]], val_pt_labs_1[count],
unique_label))
confusion_matrix = sum(hist_list)
iou = per_class_iu(confusion_matrix)
print('per class iou: -------',end = " ")
for class_name, class_iou in zip(unique_label_str, iou):
print('%s : %.2f%%' % (class_name, class_iou * 100))
val_miou = np.nanmean(iou) * 100
log_string('epoch: %d,val_miou: %f' % (epoch+1 , val_miou))
tb_writer.add_scalar("Loss_Valid", np.mean(val_loss ), global_iter)
val_pa_acc += np.diag(sum(hist_list)) / (confusion_matrix.sum(1) + 1e-10)
del val_vox_label_1, val_grid_1, val_pt_fea_ten_0, val_grid_ten_0, val_point_label_tensor_1
del confusion_matrix
gc.collect()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
if best_val_miou < val_miou:
best_val_miou = val_miou
state = { "model_net":my_model.state_dict(),
"optimizer":optimizer.state_dict(),
"epoch":epoch}
torch.save( state, './best_model.pth')
logger.info('Save model...')
log_string('Best mIoU: %f' % best_val_miou)
print('Current val miou is %.3f while the best val miou is %.3f' % (val_miou, best_val_miou))
# print('Current val loss is %.3f' % (np.mean(val_loss)))
log_string(' (np.mean(val_loss)): %f' % (np.mean(val_loss)) )
if __name__ == '__main__':
main()