diff --git a/README.md b/README.md index f611133..72e6e65 100644 --- a/README.md +++ b/README.md @@ -2,6 +2,11 @@ Determines the most relevant keywords in a headline by considering article context. Works for Node.js and the browser. Started as a forked version of [TessMyers](https://github.com/TessMyers) [headline-parser](https://github.com/TessMyers/headline-parser). +[![NPM version][npm-version-image]][npm-url] +[![NPM downloads][npm-downloads-image]][npm-url] +[![MIT License][license-image]][license-url] +[![Build Status][travis-image]][travis-url] + ## Demo ![Browser demo screenshot](./demo/ehp-demo-screenshot.png) Check out the [browser demo](https://eklem.github.io/eklem-headline-parser/demo/) or have a look at [the demo source files](https://github.com/eklem/eklem-headline-parser/tree/master/demo). @@ -60,3 +65,12 @@ It's pretty simple. The parser will count how many times a word in a title is r The parser is language agnostic, but for better accuracy, you should use the [stopword](https://www.npmjs.org/package/stopword) module to obtain only the words that are not stopwords. For this to happen, you need to define which langauge is used in the text analyzed. Some things to note: The module will not count partial appearances of keywords, or compounded keywords. For instance, if one of your headline keywords is ['china'], then neither "China", "china's" or "Indochina" will be counted as an appearance of that keyword. + + +[license-image]: http://img.shields.io/badge/license-MIT-blue.svg?style=flat +[license-url]: LICENSE +[npm-url]: https://npmjs.org/package/eklem-headline-parser +[npm-version-image]: http://img.shields.io/npm/v/eklem-headline-parser.svg?style=flat +[npm-downloads-image]: http://img.shields.io/npm/dm/eklem-headline-parser.svg?style=flat +[travis-url]: http://travis-ci.org/eklem/eklem-headline-parser +[travis-image]: http://img.shields.io/travis/eklem/eklem-headline-parser.svg?style=flat