-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlocal_reconciliation.py
306 lines (269 loc) · 13.9 KB
/
local_reconciliation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
import numpy as np
import pandas as pd
import scipy.stats
pd.options.mode.chained_assignment = None
from matplotlib import pyplot as plt, rcParams
# import cv2
import seaborn as sns
sns.set(style="white", context="paper")
from cycler import cycler
import os, sys
import glob
from datetime import datetime, timedelta
from itertools import combinations, product
import base64
from PIL import Image
from io import BytesIO as _BytesIO
import requests
import json
import pickle
from datetime import datetime
from IPython.display import display, Markdown, Latex
from sklearn.metrics import *
import collections
from copy import deepcopy
import traceback
from sympy import Point, Polygon
from decorators import *
from smartprint import smartprint as sprint
from scipy.spatial.distance import cdist
from sklearn.cluster import DBSCAN
from utils import time_diff, get_logger
# import plotly
# from pandas_profiling import ProfileReport
pd.options.display.max_columns = None
def printm(s): return display(Markdown(s))
def is_overlapping_metric(bu, bv, eps_fraction=0.1):
X_TL1, Y_TL1, X_BR1, Y_BR1 = bu[:4]
X_TL2, Y_TL2, X_BR2, Y_BR2 = bv[:4]
eps_distance = min(X_BR1 - X_TL1, X_BR2 - X_TL2, Y_BR1 - Y_TL1, Y_BR2 - Y_TL2) * eps_fraction
# if rectangle has area 0, no overlap
if X_TL1 == X_BR1 or Y_TL1 == Y_BR1 or X_TL2 == X_BR2 or Y_TL2 == Y_BR2:
return False
# If one rectangle is on left side of other
if X_TL1 > X_BR2 - eps_distance or X_TL2 > X_BR1 - eps_distance:
return False
# If one rectangle is above other
if Y_TL1 > Y_BR2 - eps_distance or Y_TL2 > Y_BR1 - eps_distance:
return False
return True
CLU_EPS = 0.4
CLU_MIN_PTS = 100
MATCH_DISTANCE_THRESHOLD = 0.2
BBOX_OVERLAP_THRESHOLD = 0.8
video_filepath = sys.argv[1]
video_id = video_filepath.split('/')[-1].split('.')[0]
session_log_dir = f'cache/tracking_singlethread_only/logs/'
os.makedirs(session_log_dir, exist_ok=True)
logger = get_logger(f"{video_id}", logdir=session_log_dir)
tracking_cache_dir = f'cache/tracking_only/output/{video_id}'
session_tracking_cache_dir = f'cache/tracking_only/session/'
postprocessed_id_map_data_dir = f'cache/tracking_only/postprocessed_id_map'
vision_cache_dir = f'cache/vision_only/output/{video_id}'
embedding_cache_dir = f'cache/embedding_output'
embmatched_id_map_data_dir = f'cache/embmatched_id_map_data'
# extract frame data
frame_file_data = {}
frame_files = glob.glob(f"{tracking_cache_dir}/*")
frame_file_names = [xr.split("/")[-1] for xr in frame_files]
if 'end.pb' in frame_file_names:
frame_file_data['is_completed']=True
else:
frame_file_data['is_completed']=False
frame_ids = [int(xr.split(".")[0]) for xr in frame_file_names if not (xr=='end.pb')]
frame_file_data['frame_ids'] = sorted(frame_ids)
frame_file_data['dir_location'] = tracking_cache_dir
# generic loop to get embedding info
session_emb_cache_file = f"{embedding_cache_dir}/{video_id}.pb"
try:
if not os.path.exists(session_emb_cache_file):
session_dir = frame_file_data['dir_location']
frame_ids = frame_file_data['frame_ids']
session_emb_info = {}
for frame_id in frame_ids:
frame_number, frame_data = pickle.load(open(f'{session_dir}/{frame_id}.pb', 'rb'))
frame_emb_info = {int(person_info['track_id']): {
'bbox': person_info['bbox'] if 'bbox' in person_info else None,
'rvec': person_info['rvec'] if 'rvec' in person_info else None,
'face': person_info['face'] if 'face' in person_info else None,
'gaze_2d': person_info['gaze_2d'] if 'gaze_2d' in person_info else None,
'face_embedding': person_info['face_embedding'] if 'face_embedding' in person_info else None,
} for person_info in frame_data}
session_emb_info[frame_id] = frame_emb_info
pickle.dump(session_emb_info, open(session_emb_cache_file, 'wb'))
print(f"Got emb info for session: {video_id}")
else:
print(f"FILE EXISTS: emb info for session: {video_id}")
except Exception as e:
print(f"Error in getting emb info for session: {video_id}")
print(e)
print(traceback.format_exc())
sys.exit(0)
CLU_EPS = 0.4
CLU_MIN_PTS = 100
MATCH_DISTANCE_THRESHOLD = 0.2
BBOX_OVERLAP_THRESHOLD = 0.8
embmatch_map_cache_file = f"{embmatched_id_map_data_dir}/{video_id}.csv"
try:
if not os.path.exists(session_emb_cache_file):
session_emb_info = pickle.load(open(f'{session_emb_cache_file}/{video_id}.pb', 'rb'))
session_id_map = pickle.load(open(f"{postprocessed_id_map_data_dir}/{video_id}.pb", "rb"))
df_tracking_new = pickle.load(open(f"{session_tracking_cache_dir}/{video_id}.pb", "rb")).transpose()
printm("## Replace raw ids with mapped ids for given session")
session_emb_info = {
xr: {
session_id_map[yr]: session_emb_info[xr][yr]
for yr in session_emb_info[xr] if not (session_id_map[yr] == 10000)} for xr in session_emb_info}
# arrange info as per new tracking id for entire session
printm("## arrange info as per new tracking id for entire session")
gaze_info = {}
emb_info = {}
bbox_info = {}
for frame_number in session_emb_info:
for trackId in session_emb_info[frame_number]:
if trackId not in gaze_info:
gaze_info[trackId] = []
emb_info[trackId] = []
bbox_info[trackId] = []
# get gaze info
try:
id_bbox = session_emb_info[frame_number][trackId]['bbox']
bbox_info[trackId].append([frame_number] + list(id_bbox))
pitch, roll, yaw = session_emb_info[frame_number][trackId]['rvec'][0]
pitch, roll, yaw = np.rad2deg(pitch), np.rad2deg(roll), np.rad2deg(yaw)
gaze_sx, gaze_sy, gaze_ex, gaze_ey = session_emb_info[frame_number][trackId]['gaze_2d'][
0].flatten()
gaze_info[trackId].append(
[frame_number, pitch, roll, yaw, gaze_sx, gaze_sy, gaze_ex, gaze_ey])
face_emb = session_emb_info[frame_number][trackId]['face_embedding'].tolist()
emb_info[trackId].append([frame_number] + face_emb)
except:
continue
for id in gaze_info:
gaze_info[id] = pd.DataFrame(gaze_info[id],
columns=['frame', 'pitch', 'roll', 'yaw', 'gaze_sx', 'gaze_sy',
'gaze_ex', 'gaze_ey']).set_index('frame')
emb_info[id] = pd.DataFrame(emb_info[id], columns=['frame'] + np.arange(512).tolist()).set_index(
'frame')
bbox_info[id] = pd.DataFrame(bbox_info[id], columns=['frame'] + np.arange(5).tolist()).set_index(
'frame')
# Get id start stop for given session (needed to evaluate overlap conditions)
printm("## Get id start stop for given session (needed to evaluate overlap conditions)")
total_idxs = df_tracking_new.index.max()
for old_id in session_id_map:
new_id = session_id_map[old_id]
if not new_id == 10000:
new_id_col = f'N{new_id}'
if new_id_col not in df_tracking_new:
df_tracking_new[new_id_col] = None
df_tracking_new[new_id_col] = df_tracking_new[new_id_col].where(
~df_tracking_new[new_id_col].isnull(), df_tracking_new[old_id])
df_tracking_new = df_tracking_new.drop(old_id, axis=1)
col_start_stop_idxs = []
for col in df_tracking_new.columns:
one_idxs = df_tracking_new.index[np.where(df_tracking_new[col] == 1)[0]].values
col_start_stop_idxs.append([col, one_idxs.min(), one_idxs.max()])
df_id_start_stop = pd.DataFrame(col_start_stop_idxs, columns=['id', 'min_idx', 'max_idx'])
df_id_start_stop['total_idxs'] = df_id_start_stop['max_idx'] - df_id_start_stop['min_idx']
df_id_start_stop['id'] = df_id_start_stop['id'].apply(lambda x: int(x[1:]))
# Use spectral clustering to get clean set of embeddings and calculate their centroid
printm("## Use spectral clustering to get clean set of embeddings and calculate their centroid")
np.random.seed(42)
clustered_median_emb = {}
for id in emb_info:
emb_clu = DBSCAN(min_samples=CLU_MIN_PTS, eps=CLU_EPS)
try:
emb_clu.fit(emb_info[id].values)
except:
emb_clu = None
if (emb_clu is None) or (max(emb_clu.labels_) < 0):
sprint(f"All frames are outliers, not proceeding with id {id}")
continue
best_cluster_id = pd.Series(emb_clu.labels_[emb_clu.labels_ >= 0]).value_counts().index[0]
frames = emb_info[id].iloc[emb_clu.labels_ == best_cluster_id].index.values
clustered_median_emb[id] = np.median(emb_info[id].loc[frames], axis=0)
# Evaluate matching distance for temporally non overlapping ids
printm("## Evaluate matching distance for temporally non overlapping ids")
match_scores = {}
for idA in sorted(clustered_median_emb.keys()):
for idB in sorted(clustered_median_emb.keys()):
if idB in match_scores.keys():
continue
# check if idA and idB overlaps, if not, Just leave them be
min_idxA, max_idxA = \
df_id_start_stop[df_id_start_stop['id'] == idA][['min_idx', 'max_idx']].values[0].tolist()
min_idxB, max_idxB = \
df_id_start_stop[df_id_start_stop['id'] == idB][['min_idx', 'max_idx']].values[0].tolist()
if len(range(max(min_idxA, min_idxB),
min(max_idxA, max_idxB))) > 150: # more than 10 seconds of overlap
# overlapping ranges
continue
match_distance = \
cdist(clustered_median_emb[idA].reshape(1, -1), clustered_median_emb[idB].reshape(1, -1))[0][0]
if match_distance < MATCH_DISTANCE_THRESHOLD:
if idA not in match_scores:
match_scores[idA] = {}
match_scores[idA][idB] = match_distance
df_matching_method = pd.DataFrame(match_scores)
# Evaluate bbox overlap to filter out spatially overlapping ids
printm("## Evaluate bbox overlap to filter out spatially overlapping ids")
overlap_scores = {}
for idA in sorted(clustered_median_emb.keys()):
for idB in sorted(clustered_median_emb.keys()):
if idB in match_scores.keys():
continue
# check if idA and idB overlaps, if not, Just leave them be
min_idxA, max_idxA = \
df_id_start_stop[df_id_start_stop['id'] == idA][['min_idx', 'max_idx']].values[0].tolist()
min_idxB, max_idxB = \
df_id_start_stop[df_id_start_stop['id'] == idB][['min_idx', 'max_idx']].values[0].tolist()
if len(range(max(min_idxA, min_idxB), min(max_idxA, max_idxB))) > 0:
# overlapping ranges
continue
bbox_overlap_matrix = cdist(bbox_info[idA].iloc[:1000], bbox_info[idB].iloc[:1000],
metric=is_overlapping_metric)
bbox_overlap = np.mean(bbox_overlap_matrix.flatten())
sprint(idA, idB, bbox_overlap)
if bbox_overlap > BBOX_OVERLAP_THRESHOLD:
if idA not in overlap_scores:
overlap_scores[idA] = {}
overlap_scores[idA][idB] = bbox_overlap
df_overlap = pd.DataFrame(overlap_scores)
# get eligible pairs from matching and spatial overlap information
printm("## get eligible pairs from matching and spatial overlap information")
if (df_matching_method.shape[0] == 0) or (df_overlap.shape[0] == 0):
df_eligible_pairs = pd.DataFrame(columns=["id_pair", "value_overlap", "value_match"])
else:
df_overlap_melted = df_overlap.reset_index().melt(id_vars='index')
df_overlap_melted = df_overlap_melted[~df_overlap_melted['value'].isnull()]
df_overlap_melted['id_pair'] = df_overlap_melted.apply(
lambda row: tuple(sorted([int(row['index']), int(row['variable'])])), axis=1)
df_overlap_melted = df_overlap_melted[['id_pair', 'value']]
df_overlap_melted
df_match_melted = df_matching_method.reset_index().melt(id_vars='index')
df_match_melted = df_match_melted[~df_match_melted['value'].isnull()]
df_match_melted['id_pair'] = df_match_melted.apply(
lambda row: tuple(sorted([int(row['index']), int(row['variable'])])), axis=1)
df_match_melted = df_match_melted[['id_pair', 'value']]
df_match_melted
df_eligible_pairs = pd.merge(df_overlap_melted, df_match_melted, on='id_pair',
suffixes=('_overlap', '_match'))
df_eligible_pairs.to_csv(embmatch_map_cache_file, index=False)
embmatch_raw_data_dict = {
'overlap_df': df_overlap,
'match_df': df_matching_method,
'eligible_pairs_df': df_eligible_pairs,
'id_session_embeddings': clustered_median_emb,
'id_start_stop_df': df_id_start_stop
}
pickle.dump(embmatch_raw_data_dict, open(f"{embedding_cache_dir}/{video_id}.pb", "wb"))
printm(
f"## Got embedding based id match for session: {video_id}")
print(f"{df_eligible_pairs.id_pair.values}")
else:
print(
f"FILE EXISTS: embedding based id match for session: {video_id}")
except:
printm(
f"# ERROR: Unable to get embedding based id match for: {video_id}")
print(traceback.format_exc())