-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathOptimiseGreedyCandle.m
114 lines (91 loc) · 3.28 KB
/
OptimiseGreedyCandle.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
%% Optimises in greedy way - candle plot in time 50 to 58
%clearvars -except Arrival capacity DistantStations e eta iifl NbhDistance NumStation StrangerSet NbhSet
tic
%% Initialise
%ProblemSize = NumStation;
ProblemSize = 150;
distance = NbhDistance(1:ProblemSize,1:ProblemSize);
%NbhVec = e(1:ProblemSize,1:ProblemSize);
sad_total = 0;
fl_record_g = Inf(ProblemSize,Tslice);
solution_g = Inf(ProblemSize,ProblemSize,72);
obj_g = Inf(72,1);
residual_g = zeros(72,1); % well, it is hard constraint
seq_choice = Inf(72,1);
%% Construct NbhSet in order of distance
NbhOrderSet = Inf(ProblemSize-1,ProblemSize); % column vectors
distance_bar = NbhDistance(1:ProblemSize,1:ProblemSize);
for cnt = 1:ProblemSize
distance_bar(cnt,cnt) = Inf;
for cnt2 = 1:(ProblemSize-1)
[val, ind] = min(distance_bar(:,cnt));
NbhOrderSet(cnt2,cnt) = ind;
distance_bar(ind,cnt) = Inf;
end
end
%% Generate Greedy Sequence
NumOfSeq = 100;
seq = Inf(ProblemSize,NumOfSeq);
obj_seq = Inf(72,NumOfSeq);
seed = RandStream('mlfg6331_64','Seed',1); % For reproducibility
for cnt = 1:NumOfSeq
seq(:,cnt) = datasample(seed,1:ProblemSize,ProblemSize,'Replace',false);
end
%% Dynamics
for Tslice = 1:72
%%% Fill level dynamics
if Tslice == 1
fl = iifl(1:ProblemSize);
else
fl = fl + eta(1:ProblemSize,Tslice-1) ...
+ sum(solution_g(:,:,Tslice-1),1)' ...
- sum(solution_g(:,:,Tslice-1),2);
end
sad = -fl; sad(sad<0) = 0; sad_total = sad_total +sum(sad);
fl(fl<0) = 0; % under-empty stations will be set as empty
% some customers would not be able to depart
fl_record_g(:,Tslice) = fl;
emptylevel = capacity(1:ProblemSize)-fl;
emptylevel(emptylevel<0) = 0; % avoid unbounded problem
%% Fill u_ss first
u = zeros(ProblemSize,ProblemSize);
empty_temp = emptylevel;
arrival_temp = Arrival(1:ProblemSize,Tslice);
for cnt = 1:ProblemSize
u(cnt,cnt) = min(empty_temp(cnt),arrival_temp(cnt));
empty_temp(cnt) = empty_temp(cnt) - u(cnt,cnt);
arrival_temp(cnt) = arrival_temp(cnt) - u(cnt,cnt);
end
%% Greedy
for cnt_seq = 1:NumOfSeq
u_bar = u;
empty_bar = empty_temp;
arrival_bar = arrival_temp;
for cnt_station = 1:ProblemSize
cnt_nbh = 0;
station = seq(cnt_station,cnt_seq);
while arrival_bar(station) > 0
cnt_nbh = cnt_nbh +1;
neighbour = NbhOrderSet(cnt_nbh,station);
u_bar(station,neighbour) = min(empty_bar(neighbour),arrival_bar(station));
empty_bar(neighbour) = empty_bar(neighbour) - u_bar(station,neighbour);
arrival_bar(station) = arrival_bar(station) - u_bar(station,neighbour);
end
end
objective_bar = sum(sum(u_bar .* distance));
obj_seq(Tslice,cnt_seq) = objective_bar;
if objective_bar < obj_g(Tslice)
solution_g(:,:,Tslice) = u_bar;
obj_g(Tslice) = objective_bar;
seq_choice(Tslice) = cnt_seq;
end
end
end
toc
%% Candlestick Plotting
boxplot(obj_seq(50:58,:)','Widths',0.6,'Labels',50:58)
axis([0.5 9.5 0 650])
hold on
plot(1:9,obj_cen(50:58,1))
xlabel('Time Slice')
ylabel('Primal Objective (km)')