forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathHubbardSimulation.qs
323 lines (275 loc) · 13.9 KB
/
HubbardSimulation.qs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
namespace Microsoft.Quantum.Samples.Hubbard {
open Microsoft.Quantum.Oracles;
open Microsoft.Quantum.Characterization;
open Microsoft.Quantum.Intrinsic;
open Microsoft.Quantum.Canon;
open Microsoft.Quantum.Convert;
open Microsoft.Quantum.Math;
open Microsoft.Quantum.Arrays;
//////////////////////////////////////////////////////////////////////////
// Introduction //////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////
// In this example, we will show how to simulate the time evolution of
// a 1D Hubbard model with `n` sites. Let `i` be the site index,
// `s` = 1,0 be the spin index, where 0 is up and 1 is down. t be the
// hopping coefficient, U the repulsion coefficient, and aᵢₛ the fermionic
// annihilation operator on the fermion indexed by {i,s}. The Hamiltonian
// of this model is
// H ≔ - t Σᵢ (a†ᵢₛ aᵢ₊₁ₛ + a†ᵢ₊₁ₛ aᵢₛ) + u Σᵢ a†ᵢ₁ aᵢ₁ a†ᵢ₀ aᵢ₀
// Note that we use closed boundary conditions.
// We do so in terms of the primitive gates defined by Q#. This requires
// us to choose an encoding of Fermionic operators into qubits, and we
// apply the Jordan-Wigner transformation for this task. We then use the
// Trotter–Suzuki control sequence to approximate time-evolution by this
// Hamiltonian. This time-evolution is used to estimate the ground state
// energy at half-filling.
// Energy estimation requires an input state with non-zero overlap with
// the ground state, and we use the anti-ferromagnetic state with
// alternating spins for this purpose.
// The Hubbard Hamiltonian is composed of Fermionic operators which act on
// Fermions and satisfy anti-commutation rules
//
// {aⱼ, aₖ} = 0, {a†ⱼ, aₖ†} = 0, {aⱼ, aₖ†} = δⱼₖ.
// In the above, the subscript indexes both the site and spin.
// If we assume that our underlying quantum machine is built upon
// primitive operations acting on qubits, these Fermions and their
// operators must be encoded as qubit operations. The mechanism to do so
// is to map each Fermionic operator to a sequence of qubit operations
// that satisfy the required anti-commutation rules.
// One option for this mapping is known as the Jordan-Wigner
// transformation, which maps each fermion index to a single qubit, and
// maps the Fermionic operators as follows:
// aⱼ → ½(Xⱼ + i Yⱼ) Zⱼ₋₁ Zⱼ₋₂ ... Z₀, a†ⱼ → ½(Xⱼ - i Yⱼ) Zⱼ₋₁ Zⱼ₋₂ ... Z₀.
// For instance, one may easily verify that the Hermitian operator
// a†ⱼ aₖ + a†ₖ aⱼ maps to ½ ( Xⱼ Zⱼ₋₁ ... Zₖ₊₁ Xₖ + Yⱼ Zⱼ₋₁ ... Zₖ₊₁ Yₖ ),
// assuming that j > k.
// Other possible mappings exist, but we do not consider them further here.
// Implementing the Jordan-Wigner transform requires us to define a
// canonical ordering between the Fermion indices {is} and
// the qubit index. Let the fermion site with index {is} correspond to the
// qubit at the index i + n*s. For example, the fermionic mode a_{3↓} of a
// chain with length 4 will correspond to the qubit at index 3 + 4 * 1 = 7.
function FermionicIndexAsQubitIndex(nSites : Int, (idxSite : Int, idxSpin : Int)) : Int {
return idxSite + nSites * idxSpin;
}
/// # Summary
/// Returns an array of Pauli operators corresponding to a Jordan–Wigner
/// string PZ...ZP
///
/// # Input
/// ## nQubits
/// Number of qubits that the represented system will act upon.
/// ## idxPauli
/// Pauli operator P to be inserted at the ends of the Jordan–Wigner
/// string
/// ## idxQubitMin
/// Smallest index to qubits in the Jordan–Wigner string
/// ## idxQubitMax
/// Largest index to qubits in the Jordan–Wigner string
///
/// # Output
/// An array of Pauli operators PZ...ZP of length nQubits padded by
/// identity terms.
///
/// # Example
/// The following are equivalent:
/// ```Q#
/// let paulis = JordanWignerPZPString(5, PauliX, 3, 1);
/// let paulis = [PauliI, PauliX, PauliZ, PauliX, PauliI];
/// ```
function JordanWignerPZPString(nQubits : Int, idxPauli : Pauli, idxQubitA : Int, idxQubitB : Int) : Pauli[] {
let idxQubitMin = MinI(idxQubitA, idxQubitB);
let idxQubitMax = MaxI(idxQubitA, idxQubitB);
mutable pauliString = ConstantArray(nQubits, PauliI);
for (idxQubit in idxQubitMin + 1 .. idxQubitMax - 1) {
set pauliString w/= idxQubit <- PauliZ;
}
return pauliString
w/ idxQubitMin <- idxPauli
w/ idxQubitMax <- idxPauli;
}
// We may now simulate time-evolution by the Fermionic hopping terms,
// which are each now expressed as Jordan-Wigner strings.
/// # Summary
/// Implements time-evolution by a single hopping term.
///
/// # Input
/// ## nSites
/// Number of sites in the Hubbard Hamiltonian.
/// ## idxSite
/// Index to a site in the Hubbard Hamiltonian.
/// ## idxSpin
/// Index to the spin of a site in the Hubbard Hamiltonian.
/// ## coefficient
/// Coefficient of the hopping term in the Hubbard Hamiltonian.
/// ## qubits
/// Qubits that the encoded Hubbard Hamiltonian acts on.
operation ApplyHubbardHoppingTerm(nSites : Int, idxSite : Int, idxSpin : Int, coefficient : Double, qubits : Qubit[]) : Unit is Adj + Ctl {
// The number of qubits in this encoding is as follows
let nQubits = 2 * nSites;
if (not (idxSpin == 0 or idxSpin == 1)) {
fail "Fermion spin index must be 0 or 1.";
}
// This is how we index the qubits
let idxQubitA = FermionicIndexAsQubitIndex(nSites, (idxSite, idxSpin));
let idxQubitB = FermionicIndexAsQubitIndex(nSites, ((idxSite + 1) % nSites, idxSpin));
let JordanWignerStringX = JordanWignerPZPString(nQubits, PauliX, idxQubitA, idxQubitB);
let JordanWignerStringY = JordanWignerPZPString(nQubits, PauliY, idxQubitA, idxQubitB);
Exp(JordanWignerStringX, 0.5 * coefficient, qubits);
Exp(JordanWignerStringY, 0.5 * coefficient, qubits);
}
// We may now simulate time-evolution by the Fermionic repulsion terms.
/// # Summary
/// Implements time-evolution by a single repulsion term.
///
/// # Input
/// ## nSites
/// Number of sites in the Hubbard Hamiltonian.
/// ## idxSite
/// Index to a site in the Hubbard Hamiltonian.
/// ## coefficient
/// Coefficient of the hopping term in the Hubbard Hamiltonian.
/// ## qubits
/// Qubits that the encoded Hubbard Hamiltonian acts on.
operation ApplyHubbardRepulsionTerm(nSites : Int, idxSite : Int, coefficient : Double, qubits : Qubit[]) : Unit is Adj + Ctl {
let idxQubitA = FermionicIndexAsQubitIndex(nSites, (idxSite, 0));
let idxQubitB = FermionicIndexAsQubitIndex(nSites, (idxSite, 1));
let coefficientZ = coefficient * 0.25;
Exp([PauliZ], -coefficientZ, [qubits[idxQubitA]]);
Exp([PauliZ], -coefficientZ, [qubits[idxQubitB]]);
Exp([PauliZ, PauliZ], coefficientZ, [qubits[idxQubitA], qubits[idxQubitB]]);
// Instead of applying a global phase, we may simply track it
// and add the result to the energy estimate later.
}
// Let us now combine these two contributions to the Hubbard Hamiltonian
// in a single operation that maps an integer indexing a term in the
// Hamiltonian to time-evolution by that term alone.
/// # Summary
/// Implements time-evolution by a single term in the Hubbard Hamiltonian.
///
/// # Input
/// ## nSites
/// Number of sites in the Hubbard Hamiltonian.
/// ## tCoefficient
/// Coefficient of hopping term.
/// ## uCoefficient
/// Coefficient of repulsion term.
/// ## idxHamiltonian
/// Index to a term in the Hubbard Hamiltonian.
/// ## stepSize
/// Duration of single step of time-evolution
/// ## qubits
/// Qubits that the encoded Hubbard Hamiltonian acts on.
operation _ApplyHubbardTerm(nSites : Int, tCoefficient : Double, uCoefficient : Double, idxHamiltonian : Int, stepSize : Double, qubits : Qubit[])
: Unit is Adj + Ctl {
// when idxHamiltonian is in [0, 2 * nSites - 1], we return a hopping term
// when idxHamiltonian is in [2 * nSites, 3 * nSites - 1], we return a repulsion term
if (idxHamiltonian < 2 * nSites) {
let idxSite = (idxHamiltonian / 2) % nSites;
let idxSpin = idxHamiltonian % 2;
ApplyHubbardHoppingTerm(nSites, idxSite, idxSpin, tCoefficient * stepSize, qubits);
} else {
let idxSite = idxHamiltonian % nSites;
ApplyHubbardRepulsionTerm(nSites, idxSite, uCoefficient * stepSize, qubits);
}
}
// We will simulate time-evolution using the Trotter–Suzuki family of
// integrators. For example, given a matrix A + B that is a sum of
// non-commuting terms A and B, the first-order integrator approximates
// e^{(A + B)t} by decomposing into the product of 2r exponentials
// e^{(A + B)t} = (e^{A t/ r} e^{B t/ r})^r + O(t^2(|A| + |B|)^2 / r).
// Note that this approximation holds for all matrices, not just the
// anti-Hermitian matrices of interest in quantum simulation.
// The Trotter decomposition is a general procedure for integration
// and we implement it as a function that acts on general types. Its
// specialization to approximating Hamiltonian time-evolution requires
// in input with signature
// (Int, ((Int, Double, Qubit[]) => () is Adj + Ctl)
// The first parameter records the number of terms in the sum.
// The second parameter performs a unitary operation, classically
// controlled by an integer index to the desired unitary, and a
// real parameter for the step size t / r.
// We now invoke the Trotter–Suzuki control structure. This requires two
// additional parameters — the trotterOrder, which determines the order
// the Trotter decompositions, and the trotterStepSize, which determines
// the duration of time-evolution of a single Trotter step.
/// # Summary
/// Returns a unitary operation that simulates time evolution by the
/// Hamiltonian for a single Trotter step.
///
/// # Input
/// ## nSites
/// Number of qubits that the represented system will act upon.
/// ## tCoefficient
/// Coefficient of hopping term.
/// ## uCoefficient
/// Coefficient of repulsion term.
/// ## trotterOrder
/// Order of Trotter integrator.
/// ## trotterStepSize
/// Duration of simulated time-evolution in single Trotter step.
///
/// # Output
/// A unitary operation.
function HubbardTrotterEvolution(nSites : Int, tCoefficient : Double, uCoefficient : Double, trotterOrder : Int, trotterStepSize : Double)
: (Qubit[] => Unit is Adj + Ctl) {
let nTerms = nSites * 3;
let op = (nTerms, _ApplyHubbardTerm(nSites, tCoefficient, uCoefficient, _, _, _));
return (DecomposedIntoTimeStepsCA(op, trotterOrder))(trotterStepSize, _);
}
// We now define an operation that prepares the anti-Ferromagnetic initial
// and estimates the ground state energy using time evolution by the
// Hubbard Hamiltonian.
/// # Summary
/// Implements time-evolution by the Hubbard Hamiltonian on a line of qubits
/// initialized in an antiferromagnetic state, then performs phase estimation
/// to estimate the energy of the antiferromagnetic configuration at half
/// filling.
///
/// # Input
/// ## nSites
/// Number of qubits that the represented system will act upon.
/// ## tCoefficient
/// Coefficient of hopping term.
/// ## uCoefficient
/// Coefficient of repulsion term.
/// ## nBitsPrecision
/// The number of bits of precision to use in phase estimation.
/// ## trotterStepSize
/// Duration of simulated time-evolution in single Trotter step.
///
/// # Output
/// An estimate of the energy of the antiferromagnetic state at half filling.
operation EstimateHubbardAntiFerromagneticEnergy(nSites : Int, tCoefficient : Double, uCoefficient : Double, nBitsPrecision : Int, trotterStepSize : Double) : Double {
// Number of qubits in this encoding is equal to the number of
// Fermion sites * number of spin indices.
let nQubits = 2 * nSites;
// Let us use the first-order Trotter–Suzuki decomposition.
let trotterOrder = 1;
// The input to phase estimation requires a DiscreteOracle type.
let qpeOracle = OracleToDiscrete(HubbardTrotterEvolution(nSites, tCoefficient, uCoefficient, trotterOrder, trotterStepSize));
using (qubits = Qubit[nQubits]) {
// This prepares the antiferromagnetic initial state
// at half filling by adding one electron to each site with
// alternating spins.
for (idxSite in 0 .. nSites - 1) {
let idxSpin = idxSite % 2;
let idxQubit = nSites * idxSpin + idxSite;
X(qubits[idxQubit]);
}
// We now call the robust phase estimation procedure and
// divide by the trotterStepSize to normalize the estimate
// to units of energy.
let energyEst =
RobustPhaseEstimation(nBitsPrecision, qpeOracle, qubits) / trotterStepSize
// We add the contribution of the global phase here.
+ (IntAsDouble(nSites) * uCoefficient) * 0.25;
// We must reset all qubits to the |0〉 state before releasing them.
ResetAll(qubits);
// We return the energy estimate here.
return energyEst;
}
}
}