forked from microsoft/Quantum
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.cs
270 lines (226 loc) · 9.95 KB
/
Program.cs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
using System;
using System.IO;
using System.Net;
using System.Net.Sockets;
using System.Threading;
using System.Collections.Generic;
using Newtonsoft.Json;
using Microsoft.Quantum.Simulation.Simulators;
using System.Runtime.InteropServices;
using System.Linq;
using Microsoft.Quantum.Chemistry.Fermion;
using Microsoft.Quantum.Chemistry.OrbitalIntegrals;
using Microsoft.Quantum.Chemistry.QSharpFormat;
namespace Microsoft.Quantum.Chemistry.Samples.Hydrogen
{
internal static class HydrogenSimulation
{
// We now plot estimates of the ground state energy for
// molecular Hydrogen as a function of bond distance.
// Here, we load a list of Hydrogen Hamiltonians from the included file
// "dis_H2.dat".
internal static IEnumerable<LiQuiD.ProblemDescription> problemData =
LiQuiD.Deserialize("dis_H2.dat");
// For each Hamiltonian,
internal static (Double, Double) GetSimulationResult(int idxBond)
{
// Choose the desired problem indexed by `idx`.
var problem = problemData.ElementAt(idxBond);
// Create fermion representation of Hamiltonian.
var fermionHamiltonian = problem.OrbitalIntegralHamiltonian
.ToFermionHamiltonian(IndexConvention.UpDown);
// Create Jordan–Wigner encoding of Hamiltonian.
var jordanWignerEncoding = fermionHamiltonian.ToPauliHamiltonian(Paulis.QubitEncoding.JordanWigner);
// Bond length conversion from Bohr radius to Angstrom
double bondLength = Double.Parse(problem.MiscellaneousInformation.Split(new char[] { ',' }).Last()) * 0.5291772;
// Create input wavefunction.
var wavefunction = fermionHamiltonian.CreateHartreeFockState(nElectrons: 2);
// Choose bits of precision in quantum phase estimation
Int64 bitsOfPrecision = 7;
// Choose the Trotter step size.
Double trotterStepSize = 1.0;
// Choose the Trotter integrator order
Int64 trotterOrder = 1;
// Invoke quantum simulator and run `GetEnergyByTrotterization` in the first
// molecular Hydrogen sample.
using (var qSim = new QuantumSimulator())
{
// Package hamiltonian and wavefunction data into a format
// consumed by Q#.
var qSharpData = QSharpFormat.Convert.ToQSharpFormat(
jordanWignerEncoding.ToQSharpFormat(),
wavefunction.ToQSharpFormat());
System.Console.WriteLine($"Estimating at bond length {idxBond}:");
// Loop if excited state energy is obtained.
var energyEst = 0.0;
do
{
var (phaseEst, energyEstTmp) = GetEnergyByTrotterization.Run(qSim, qSharpData, bitsOfPrecision, trotterStepSize, trotterOrder).Result;
energyEst = energyEstTmp;
} while (energyEst > -0.8);
return (bondLength, energyEst);
}
}
// Theorertical energy data for comparison.
internal static readonly double[] theoryEnergyData = {
0.14421, -0.323939, -0.612975, -0.80051, -0.92526,
-1.00901, -1.06539, -1.10233, -1.12559, -1.13894,
-1.14496, -1.1456, -1.14268, -1.13663, -1.12856,
-1.1193, -1.10892, -1.09802, -1.08684, -1.07537,
-1.06424, -1.05344, -1.043, -1.03293, -1.02358,
-1.01482, -1.00665, -0.999025, -0.992226, -0.985805,
-0.980147, -0.975156, -0.970807, -0.966831, -0.963298,
-0.960356, -0.957615, -0.95529, -0.953451, -0.951604,
-0.950183, -0.949016, -0.947872, -0.946982, -0.946219,
-0.945464, -0.944887, -0.944566, -0.94415, -0.943861,
-0.943664, -0.943238, -0.943172, -0.942973
};
// Theorertical bond distance data for comparison.
internal static readonly double[] theoryDistanceData = {
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65,
0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15,
1.2, 1.25, 1.3, 1.35, 1.4, 1.45, 1.5, 1.55, 1.6, 1.65,
1.7, 1.75, 1.8, 1.85, 1.9, 1.95, 2.0, 2.05, 2.1, 2.15,
2.2, 2.25, 2.3, 2.35, 2.4, 2.45, 2.5, 2.55, 2.6, 2.65,
2.7, 2.75, 2.8, 2.85
};
}
#region Real-time plotting functionality
class ServerThread
{
private static byte[] SerializeResponse(string respType, object response) =>
System.Text.Encoding.UTF8.GetBytes(
JsonConvert.SerializeObject(
new Dictionary<string, object>
{
{ "type", respType },
{ "data", response }
}
) + "\f"
);
private static void SendPlotPoints(NetworkStream stream)
{
// Plot theory data points first
foreach (var idxBond in Enumerable.Range(0, HydrogenSimulation.theoryEnergyData.Length))
{
var response = SerializeResponse(
"plotPoint",
new Dictionary<string, object>
{
{ "source", "theory" },
{ "bondLength", HydrogenSimulation.theoryDistanceData[idxBond] },
{ "theoreticalEnergy", HydrogenSimulation.theoryEnergyData[idxBond] },
}
);
stream.Write(response, 0, response.Length);
}
// Now plot simulation results
foreach (var idxBond in Enumerable.Range(0, 25))
{
var (bondLength, energyEst) = HydrogenSimulation.GetSimulationResult(idxBond);
var response = SerializeResponse(
"plotPoint",
new Dictionary<string, object>
{
{ "source", "simulation" },
{ "bondLength", bondLength },
{ "estEnergy", energyEst }
}
);
stream.Write(response, 0, response.Length);
}
}
public static void Start()
{
TcpListener server = null;
try
{
var port = 8010;
var localAddress = IPAddress.Parse("127.0.0.1");
server = new TcpListener(localAddress, port);
server.Start();
while (true)
{
var client = server.AcceptTcpClient();
Console.WriteLine("@@ Connected to client. @@");
// Allocate a buffer.
var buffer = new Byte[256];
var stream = client.GetStream();
var nBytesRead = -1;
while ((nBytesRead = stream.Read(buffer, 0, buffer.Length)) != 0)
{
var rawMessage = System.Text.Encoding.UTF8.GetString(buffer, 0, nBytesRead);
Console.WriteLine($"@@ Received from client: {rawMessage} @@");
var message = JsonConvert.DeserializeObject<Dictionary<string, object>>(rawMessage);
message.TryGetValue("type", out var messageType);
message.TryGetValue("data", out var messageData);
if ((string)messageType == "event" && (string)messageData == "readyToPlot")
{
Console.WriteLine("@@ Got request for plotting data, running simulator. @@");
SendPlotPoints(stream);
}
}
}
}
finally
{
server.Stop();
}
}
}
class Program
{
static string FindOnPath(string fileName)
{
foreach (var candidateRoot in (
System.Environment.GetEnvironmentVariable("PATH").Split(
Path.PathSeparator
))
)
{
var path = Path.Combine(candidateRoot.Trim(), fileName);
if (File.Exists(path))
{
return path;
}
}
throw new FileNotFoundException($"Did not find {fileName} on $Env:PATH.");
}
static void Main(string[] args)
{
Console.WriteLine("Starting Simulation Server...");
var serverThread = new Thread(ServerThread.Start);
serverThread.Start();
Console.WriteLine("Starting GUI...");
var process = new System.Diagnostics.Process
{
StartInfo = new System.Diagnostics.ProcessStartInfo
{
FileName = FindOnPath(
RuntimeInformation.IsOSPlatform(OSPlatform.Windows)
? "npm.cmd" : "npm"
),
UseShellExecute = false,
Arguments = "start",
CreateNoWindow = true
}
};
process.Start();
process.WaitForExit();
// Check the npm process' exit code to make sure that npm
// start actually ran correctly.
while (!process.HasExited) {
System.Threading.Thread.Sleep(500);
}
if (process.ExitCode != 0) {
System.Console.WriteLine($"GUI returned exit code {process.ExitCode}; did you run npm install?");
}
// If we got this far, go on and call Environment's exit method,
// killing the server thread.
System.Environment.Exit(process.ExitCode);
}
}
#endregion
}