-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathLosses.py
119 lines (92 loc) · 3.62 KB
/
Losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import torch
import torch.nn as nn
import torch.nn.functional as F
from Utils import *
def mae_loss(y_pred, y_true):
"""L1 Loss"""
e = torch.mean(torch.abs(y_true - y_pred))
return e
def mse_loss(y_pred, y_true):
"""L2 Loss"""
e = torch.mean(torch.square(y_true - y_pred))
return e
def raw2spec_mae_loss(y_pred, y_true, stft):
"""L1 Loss on raw2spec Spectrograms"""
stft = stft.to(y_pred.device)
y_pred_2spec = stft_transform(y_pred, stft)
y_true_2spec = stft_transform(y_true, stft)
e = torch.mean(torch.abs(y_true_2spec - y_pred_2spec))
return e
def raw2spec_mse_loss(y_pred, y_true, stft):
"""Le Loss on raw2spec Spectrograms"""
stft = stft.to(y_pred.device)
y_pred_2spec = stft_transform(y_pred, stft)
y_true_2spec = stft_transform(y_true, stft)
e = torch.mean(torch.square(y_true_2spec - y_pred_2spec))
return e
def fnorm(matrix):
"""Frobenius Norm"""
f = torch.sqrt(torch.sum(torch.pow(torch.abs(matrix), 2)))
return f
def spectral_convergence_loss(y_pred, y_true):
"""Spectral Convergence Loss on Spectrograms"""
e = fnorm(y_true - y_pred) / fnorm(y_true)
return e
def raw2spec_spectral_convergence_loss(y_pred, y_true, stft):
"""Spectral Convergence Loss on raw2spec Spectrograms"""
stft = stft.to(y_pred.device)
assert stft.dB==False, print('Spectral convergence uses linearly scaled spectrograms')
y_pred_2spec = stft_transform(y_pred, stft)
y_true_2spec = stft_transform(y_true, stft)
e = fnorm(y_true_2spec - y_pred_2spec) / fnorm(y_true_2spec)
return e
def neg_si_sdr(y_pred, y_true, zero_mean=False, epsilon=1e-10):
if zero_mean:
mean_true = torch.mean(y_true, dim=2, keepdim=True)
mean_pred = torch.mean(y_pred, dim=2, keepdim=True)
y_true = y_true - mean_true
y_pred = y_pred - mean_pred
pairwise_dot = torch.sum(y_pred * y_true, dim=2, keepdim=True)
true_energy = torch.sum(y_true ** 2, dim=2, keepdim=True) + epsilon
scaled_true = pairwise_dot * y_true / true_energy
e_noise = y_pred - scaled_true
pairwise_sdr = torch.sum(scaled_true ** 2, dim=2) / (torch.sum(e_noise ** 2, dim=2) + epsilon)
pairwise_sdr = 10 * torch.log10(pairwise_sdr + epsilon)
return -torch.mean(pairwise_sdr)
def total_loss(y_pred, y_true, stft):
stft = stft.to(y_pred.device)
assert stft.dB==False, print('Spectral convergence uses linearly scaled spectrograms')
y_pred_2spec = stft_transform(y_pred, stft)
y_true_2spec = stft_transform(y_true, stft)
w1 = 1
w2 = 1e-1
w3 = 2e-2
l1 = torch.mean(torch.abs(y_true - y_pred))
l2 = torch.mean(torch.abs(y_true_2spec - y_pred_2spec))
l3 = fnorm(y_true_2spec - y_pred_2spec) / fnorm(y_true_2spec)
l = w1*l1 + w2*l2 + w3*l3
return l
@pit_wrapper_loss
def pit_mae_loss(y_pred, y_true):
return mae_loss(y_pred, y_true)
@pit_wrapper_loss
def pit_raw2spec_mae_loss(y_pred, y_true, stft):
return raw2spec_mae_loss(y_pred, y_true, stft)
@pit_wrapper_loss
def pit_mse_loss(y_pred, y_true):
return mse_loss(y_pred, y_true)
@pit_wrapper_loss
def pit_raw2spec_mse_loss(y_pred, y_true, stft):
return raw2spec_mse_loss(y_pred, y_true, stft)
@pit_wrapper_loss
def pit_spectral_convergence_loss(y_pred, y_true):
return spectral_convergence_loss(y_pred, y_true)
@pit_wrapper_loss
def pit_raw2spec_spectral_convergence_loss(y_pred, y_true, stft):
return raw2spec_spectral_convergence_loss(y_pred, y_true, stft)
@pit_wrapper_loss
def pit_neg_si_sdr(y_pred, y_true, zero_mean=False, epsilon=1e-10):
return neg_si_sdr(y_pred, y_true, zero_mean=zero_mean, epsilon=epsilon)
@pit_wrapper_loss
def pit_total_loss(y_pred, y_true, stft):
return total_loss(y_pred, y_true, stft)