-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathUtils.py
65 lines (55 loc) · 1.44 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import torch
import torch.nn as nn
import torch.nn.functional as F
import random
import numpy as np
from itertools import permutations, product
def weights_init(m):
if (type(m) == nn.Conv1d) or (type(m) == nn.ConvTranspose1d):
torch.nn.init.xavier_uniform_(m.weight)
def id_mapper(y):
try:
ids = np.unique(y.numpy()).tolist()
id_dict = {e:i for i,e in enumerate(ids)}
for i in range(y.size(0)):
y[i] = id_dict[y[i].item()]
except AttributeError:
ids = np.unique(y).tolist()
id_dict = {e:i for i,e in enumerate(ids)}
for i in range(len(y)):
y[i] = id_dict[y[i]]
return y
def stft_mag_transform(x, stft):
assert stft.coords == 'polar', 'Transform uses magnitude'
_, mag = stft(x)
return mag
def vae_recon_wrapper(func):
def inner_args(*args, **kwargs):
x_hat = args[0]
x = args[1]
return func(x_hat, x, **kwargs)
return inner_args
def vae_kld_wrapper(func):
def inner_args(*args):
mu = args[2]
logvar = args[3]
return func(mu, logvar)
return inner_args
def vq_vae_loss_wrapper(func):
def inner_args(*args):
l = args[3]
return func(l)
return inner_args
def vae_metric_wrapper(func):
def inner_args(*args, **kwargs):
x_hat = args[0]
data = args[-1]
return func(x_hat, data, **kwargs)
return inner_args
def seed_everything(seed=111):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
def logistic(x, _max, _min, k, x0):
y = (_max - _min) / (1 + np.exp(-k * (x - x0))) + _min
return y