-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathBase.py
49 lines (38 loc) · 1.2 KB
/
Base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
import torch.nn as nn
import torch.nn.functional as F
from abc import abstractmethod
import numpy as np
class BaseModel(nn.Module):
@abstractmethod
def forward(self, *input):
raise NotImplementedError
def __str__(self):
model_parameters = filter(lambda p: p.requires_grad, self.parameters())
params = sum([np.prod(p.size()) for p in model_parameters])
return super(BaseModel, self).__str__() + f'\nTrainable parameters: {params}'
@staticmethod
def _verbose(show, *args):
if show:
print(*args)
class BaseAutoencoder(BaseModel):
def __init__(self):
super(BaseAutoencoder, self).__init__()
def encode(self, *input):
raise NotImplementedError
def decode(self, *input):
raise NotImplementedError
def sample(self, batch_size, current_device, **kwargs):
raise RuntimeWarning()
def generate(self, x, **kwargs):
raise NotImplementedError
def latent(self, *input):
raise NotImplementedError
@abstractmethod
def forward(self, *inputs):
raise NotImplementedError
@staticmethod
def reparametrization(mu, logvar):
sigma = torch.exp(0.5 * logvar)
epsilon = torch.distributions.normal.Normal(0, 1).sample(sample_shape=sigma.size()).to(mu.device)
return mu + epsilon * sigma