forked from PRBonn/bonnetal
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
executable file
·117 lines (107 loc) · 3.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
#!/usr/bin/env python3
# This file is covered by the LICENSE file in the root of this project.
import argparse
import subprocess
import datetime
import yaml
from shutil import copyfile
import os
import shutil
import __init__ as booger
from tasks.segmentation.modules.trainer import *
if __name__ == '__main__':
parser = argparse.ArgumentParser("./train.py")
parser.add_argument(
'--cfg', '-c',
type=str,
required=False,
help='Classification yaml cfg file. See /config for sample. No default!',
)
parser.add_argument(
'--log', '-l',
type=str,
default=os.path.expanduser("~") + '/logs/' +
datetime.datetime.now().strftime("%Y-%-m-%d-%H:%M") + '/',
help='Directory to put the log data. Default: ~/logs/date+time'
)
parser.add_argument(
'--path', '-p',
type=str,
required=False,
default=None,
help='Directory to get the pretrained model. If not passed, do from scratch!'
)
parser.add_argument(
'--eval',
dest='eval',
default=False,
action='store_true',
help='Only evaluate, no training. Defaults to %(default)s',
)
parser.add_argument(
'--no_batchnorm',
dest='no_batchnorm',
default=False,
action='store_true',
help='Halt batchnorm training, for smaller batch-size fine-tuning. Defaults to %(default)s',
)
FLAGS, unparsed = parser.parse_known_args()
# print summary of what we will do
print("----------")
print("INTERFACE:")
print("config yaml: ", FLAGS.cfg)
print("log dir", FLAGS.log)
print("model path", FLAGS.path)
print("eval only", FLAGS.eval)
print("No batchnorm", FLAGS.no_batchnorm)
print("----------\n")
print("Commit hash (training version): ", str(
subprocess.check_output(['git', 'rev-parse', '--short', 'HEAD']).strip()))
print("----------\n")
if FLAGS.path is None and FLAGS.cfg is None:
print("If no pretrained model is provided, then a cfg file MUST")
quit()
# try to open data yaml
try:
if(FLAGS.cfg):
print("Opening config file %s" % FLAGS.cfg)
f = open(FLAGS.cfg, 'r')
configfile = FLAGS.cfg
else:
print("Opening default data file cfg.yaml from log folder")
f = open(FLAGS.path + '/cfg.yaml', 'r')
configfile = FLAGS.path + '/cfg.yaml'
CFG = yaml.safe_load(f)
except Exception as e:
print(e)
print("Error opening yaml file.")
quit()
# create log folder
try:
if os.path.isdir(FLAGS.log):
shutil.rmtree(FLAGS.log)
os.makedirs(FLAGS.log)
except Exception as e:
print(e)
print("Error creating log directory. Check permissions!")
quit()
# does model folder exist?
if FLAGS.path is not None:
if os.path.isdir(FLAGS.path):
print("model folder exists! Using model from %s" % (FLAGS.path))
else:
print("model folder doesnt exist! Start with random weights...")
else:
print("No pretrained directory found.")
# copy all files to log folder (to remember what we did, and make inference
# easier). Also, standardize name to be able to open it later
try:
print("Copying files to %s for further reference." % FLAGS.log)
copyfile(configfile, FLAGS.log + "/cfg.yaml")
except Exception as e:
print(e)
print("Error copying files, check permissions. Exiting...")
quit()
# create trainer and start the training
trainer = Trainer(CFG, FLAGS.log, FLAGS.path, FLAGS.eval, FLAGS.no_batchnorm)
trainer.train()