-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdpllResolution.v
524 lines (435 loc) · 16.4 KB
/
dpllResolution.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
Set Implicit Arguments.
Load dpll.
(*=============================================================================
* sublist
*===========================================================================*)
Section sublist.
Ltac e := eauto 3 with list.
Local Hint Constructors Forall : list.
Local Hint Resolve in_or_app Forall_impl : list.
Variable A : Type.
Definition sublist (x y : list A) := List.Forall (fun a => In a y) x.
Lemma sublist_refl : forall (x : list A), sublist x x.
unfold sublist; induction x; e.
constructor; simpl; e.
eapply Forall_impl; try eassumption; e.
Qed.
Lemma sublist_app : forall (l x y : list A), sublist l x \/ sublist l y
-> sublist l (x ++ y).
induction l.
{
unfold sublist; simpl; intros; e.
}
{
unfold sublist; simpl; intros.
constructor.
destruct H; inversion_clear H; e.
apply IHl.
destruct H; inversion_clear H; e.
}
Qed.
Lemma sublist_In : forall x (a : A) y, sublist x y -> In a x -> In a y.
induction x; simpl; try tauto; inversion_clear 1; destruct 1; subst; auto.
Qed.
End sublist.
Local Hint Resolve sublist_refl sublist_app sublist_In.
(*=============================================================================
* resolvent
*===========================================================================*)
Theorem eq_lit_dec : forall x y : lit, { x = y } + { x <> y }.
decide equality; apply NPeano.Nat.eq_dec.
Qed.
Definition remove_lit := remove eq_lit_dec.
Definition resolvent cr c1 c2 v :=
let c1' := remove_lit (pos v) c1 in
let c2' := remove_lit (neg v) c2 in
sublist c1' cr /\ sublist c2' cr.
(*=============================================================================
* resolvent facts
*===========================================================================*)
Lemma interpClause_drop_lit : forall i l c, interpClause i c = true
-> interpLit i l = false
-> interpClause i (remove_lit l c) = true.
induction c; simpl; try congruence; intros.
destruct (eq_lit_dec l a); subst.
rewrite H0 in H; auto.
simpl; destruct (interpLit i a) eqn:?; simpl in *; auto.
Qed.
Lemma interpClause_exists : forall i x, interpClause i x = true
-> exists l, In l x /\ interpLit i l = true.
induction x; simpl; try congruence; intros.
destruct (interpLit i a) eqn:?; eauto; simpl in *.
destruct IHx as [? [] ]; eauto.
Qed.
Lemma interpClause_In : forall l i x, interpLit i l = true -> In l x
-> interpClause i x = true.
induction x; simpl; try tauto; intros.
destruct H0; subst.
rewrite H; auto.
destruct (interpLit i a) eqn:?; eauto; simpl in *.
Qed.
Lemma interpClause_sublist : forall i x y, interpClause i x = true
-> sublist x y -> interpClause i y = true.
intros.
edestruct interpClause_exists as [? [] ]; try eassumption.
eapply interpClause_In; try eassumption.
eapply Forall_forall in H0; eassumption.
Qed.
Theorem resolvent_sound : forall c1 c2 v i cr, resolvent cr c1 c2 v
-> interpClause i c1 = true -> interpClause i c2 = true
-> interpClause i cr = true.
unfold resolvent; simpl; intros.
destruct H.
destruct (i v) eqn:?.
{
eapply interpClause_sublist; try apply H2.
apply interpClause_drop_lit; auto.
unfold interpLit; rewrite Heqb; auto.
}
{
eapply interpClause_sublist; try apply H.
apply interpClause_drop_lit; auto.
}
Qed.
Hint Resolve resolvent_sound.
(*=============================================================================
* semantic entailment (in classical semantics)
*===========================================================================*)
Definition entails f c := forall i, interpFormula i f = true
-> interpClause i c = true.
Lemma interpFormula_In : forall f i c, interpFormula i f = true
-> In c f -> interpClause i c = true.
induction f; simpl; try tauto; intros.
destruct H0; subst.
apply Bool.andb_true_iff in H; tauto.
apply Bool.andb_true_iff in H; destruct H; auto.
Qed.
Hint Resolve interpFormula_In.
Theorem In_entails : forall f c, In c f -> entails f c.
unfold entails; intros; eauto 3.
Qed.
Hint Resolve In_entails.
Theorem resolvent_entails : forall f c1 c2 v cr, resolvent cr c1 c2 v
-> entails f c1 -> entails f c2 -> entails f cr.
unfold entails; intros; eauto 4.
Qed.
Hint Resolve resolvent_entails.
(*=============================================================================
* pf - resolution-based inference system
*===========================================================================*)
Inductive pf (f : formula) : clause -> Prop :=
| pf_asm c : In c f -> pf f c
| pf_res cr c1 c2 v : pf f c1 -> pf f c2 -> resolvent cr c1 c2 v -> pf f cr.
Theorem pf_sound : forall f c, pf f c -> entails f c.
induction 1; eauto 3.
Qed.
Lemma pf_nil_interp_false : forall f, pf f nil
-> forall i, interpFormula i f = false.
intros.
destruct (interpFormula i f) eqn:?; auto.
assert (interpClause i nil = true) by (eapply pf_sound; eauto 2).
simpl in *; congruence.
Qed.
Theorem pf_nil_unsat : forall f, pf f nil -> ~ satisfiable f.
intros; red; destruct 1.
assert (interpFormula x f = false).
solve [apply pf_nil_interp_false; auto].
congruence.
Qed.
(*=============================================================================
* more list facts
*===========================================================================*)
Hint Resolve remove_In.
Lemma remove_In_inv : forall A eq (x y: A) l, x <> y -> In x (remove eq y l)
-> In x l.
induction l; simpl; try tauto.
destruct (eq y a); subst; auto.
destruct 2; subst; auto.
Qed.
Hint Resolve remove_In_inv.
Lemma In_neq_remove : forall A eq (a b : A) l, In a l -> a <> b
-> In a (remove eq b l).
induction l; simpl; try tauto.
destruct 1; subst; intros.
destruct (eq b a); try congruence; auto.
destruct (eq b a0); try congruence; auto.
Qed.
Lemma sublist_trans : forall A (x y z : list A), sublist x y -> sublist y z
-> sublist x z.
intros; apply Forall_forall; eauto 3.
Qed.
Hint Resolve sublist_trans.
Lemma sublist_drop : forall A (a : A) l, In a l -> sublist (a :: l) l.
intros; apply Forall_forall; destruct 1; subst; auto.
Qed.
Hint Resolve sublist_drop.
Lemma sublist_remove : forall A eq (x : A) l l', remove eq x l = l'
-> sublist l' l.
intros; apply Forall_forall; intros.
destruct (eq x0 x); subst; eauto 3.
solve [contradict H0; auto].
Qed.
Lemma sublist_remove_lit : forall x l l', remove_lit x l = l'
-> sublist l' l.
apply sublist_remove.
Qed.
Hint Resolve sublist_remove_lit.
Lemma sublist_add : forall A (a : A) x y, sublist x y -> sublist x (a :: y).
intros.
eapply sublist_trans; eauto 3.
apply Forall_forall; simpl; auto.
Qed.
Lemma sublist_add' : forall A (a : A) x y, sublist x y
-> sublist (a :: x) (a :: y).
intros.
apply Forall_forall.
destruct 1; subst; simpl; eauto 3.
Qed.
Hint Resolve sublist_add sublist_add'.
Lemma sublist_any : forall A (x : list A), sublist nil x.
intros; apply Forall_forall; simpl; tauto.
Qed.
Hint Resolve sublist_any.
(*=============================================================================
* pf facts
*===========================================================================*)
Hint Constructors pf.
Lemma pf_nil : forall f c, pf f nil -> pf f c.
intros.
assert (resolvent c nil nil 0).
{
split; simpl; apply Forall_forall; simpl; tauto.
}
econstructor 2; try eassumption.
Qed.
Lemma In_sublist_pf : forall x y f, In x f -> sublist x y -> pf f y.
intros.
destruct y; [destruct H0; simpl in *; auto; tauto | ].
assert (resolvent (l :: y) x x (litVar l)) by (split; eauto 3).
econstructor 2; try eassumption; auto.
Qed.
Hint Resolve In_sublist_pf.
Lemma pf_sublist : forall x y f, pf f x -> sublist x y -> pf f y.
inversion_clear 1; eauto 3; intros.
assert (resolvent y c3 c4 v).
solve [destruct H2; split; eauto 3].
eauto 3.
Qed.
Hint Resolve pf_sublist.
(*=============================================================================
* dpll n f = None -> pf f nil
*===========================================================================*)
Fixpoint dropLitsClause (c : clause) ls :=
match ls with
| nil => c
| l :: ls' => dropLitsClause (remove_lit l c) ls'
end.
Fixpoint dropLits (f : formula) ls :=
match f with
| nil => nil
| c :: f' => dropLitsClause c ls :: dropLits f' ls
end.
Definition mkLit (b : bool) v := if b then pos v else neg v.
(* list of assumptions into a clause (as negations of assumptions) *)
Fixpoint negate_h s n :=
match s with
| nil => nil
| b :: s' => mkLit (negb b) n :: negate_h s' (S n)
end.
Definition negate s := negate_h s 0.
Lemma In_dropLits_ex : forall f c ls, In c (dropLits f ls)
-> exists x, In x f /\ c = dropLitsClause x ls.
induction f; simpl; try tauto; destruct 1; eauto 4.
edestruct IHf as [? [] ]; eauto 4.
Qed.
Lemma In_dropLits : forall x ls f, In x f
-> In (dropLitsClause x ls) (dropLits f ls).
induction f; simpl; try tauto; destruct 1; subst; auto.
Qed.
Hint Resolve In_dropLits.
Lemma dropLitsClause_app_inv : forall y x c, dropLitsClause c (x ++ y)
= dropLitsClause (dropLitsClause c x) y.
induction x; simpl; auto.
Qed.
Lemma negate_h_add : forall b l n, negate_h (l ++ b :: nil) n
= negate_h l n ++ mkLit (negb b) (length l + n) :: nil.
unfold negate; induction l; simpl; auto; intros.
replace (S (length l + n)) with (length l + (S n)) by omega.
f_equal; auto.
Qed.
Lemma negate_add : forall b l, negate (l ++ b :: nil)
= negate l ++ mkLit (negb b) (length l) :: nil.
unfold negate; intros; rewrite negate_h_add; repeat f_equal; omega.
Qed.
Lemma dropLitsClause_negate_add : forall x l b,
dropLitsClause x (negate (l ++ b :: nil))
= remove_lit (mkLit (negb b) (length l))
(dropLitsClause x (negate l)).
intros; rewrite negate_add, dropLitsClause_app_inv; simpl; auto.
Qed.
Lemma pf_dropLits_add : forall b f c l,
pf (dropLits f (negate (l ++ b :: nil))) c
-> pf (dropLits f (negate l))
(mkLit (negb b) (length l) :: c).
induction 1.
{
edestruct In_dropLits_ex as [? [] ]; eauto 3.
subst.
assert (In (dropLitsClause x (negate l)) (dropLits f (negate l))).
solve [apply In_dropLits; auto].
eapply pf_sublist; eauto 3.
rewrite dropLitsClause_negate_add.
apply Forall_forall; intros; simpl.
destruct (eq_lit_dec x0 (mkLit (negb b) (length l))); subst; auto.
right.
apply In_neq_remove; auto.
}
{
assert (resolvent (mkLit (negb b) (length l) :: cr)
(mkLit (negb b) (length l) :: c3)
(mkLit (negb b) (length l) ::c4) v).
{
destruct H1.
split; simpl.
destruct (eq_lit_dec (pos v) (mkLit (negb b) (length l))); auto; congruence.
destruct (eq_lit_dec (neg v) (mkLit (negb b) (length l))); auto.
}
eauto 3.
}
Qed.
Hint Resolve pf_dropLits_add.
Lemma dropLitsClause_nil : forall l, dropLitsClause nil l = nil.
induction l; simpl; auto.
Qed.
Hint Resolve dropLitsClause_nil.
Lemma In_dropLitsClause : forall l ls c, In l (dropLitsClause c ls)
-> In l c /\ ~ In l ls.
induction ls; simpl; auto; intros.
edestruct IHls; eauto 3.
destruct (eq_lit_dec l a); subst.
contradict H0; apply remove_In.
split; eauto 3.
intro.
destruct H2; congruence.
Qed.
Lemma In_negate_h : forall m v n, v < length m
-> In (mkLit (negb (nth v m true)) (v + n)) (negate_h m n).
induction m; simpl; intros; try omega.
destruct v; subst.
{
destruct a; auto.
}
{
destruct a; simpl.
replace (S (v + n)) with (v + S n) by omega.
right; apply IHm; omega.
replace (S (v + n)) with (v + S n) by omega.
right; apply IHm; omega.
}
Qed.
Lemma In_negate : forall m v b, v < length m -> nth v m true = b
-> In (mkLit (negb b) v) (negate m).
unfold negate; intros.
replace (mkLit (negb b) v) with (mkLit (negb b) (v + 0)) by (f_equal; omega).
subst; apply In_negate_h; auto.
Qed.
Lemma okLit_false_In_negate : forall m l, okLit m l = false -> In l (negate m).
unfold okLit; intros.
destruct (getVal m (litVar l)) eqn:?; try congruence.
edestruct getVal_Some_inv; eauto 2.
destruct l; subst; simpl in *.
change (In (mkLit (negb false) n) (negate m)); apply In_negate; auto.
apply Bool.negb_false_iff in H.
change (In (mkLit (negb true) n) (negate m)); apply In_negate; auto.
Qed.
Hint Resolve okLit_false_In_negate.
Lemma dropLitsClause_empty : forall c l, okClause l c = false
-> sublist (dropLitsClause c (negate l)) nil.
intros.
apply Forall_forall; intros.
simpl.
edestruct In_dropLitsClause; eauto 3.
assert (okLit l x = false) by eauto 3.
contradict H2; auto.
Qed.
Lemma dropLits_nil : forall f, dropLits f nil = f.
induction f; simpl; auto; f_equal; auto.
Qed.
Lemma pf_dropLits : forall c f l, In c f -> okClause l c = false
-> pf (dropLits f (negate l)) nil.
intros.
assert (sublist (dropLitsClause c (negate l)) nil).
solve [apply dropLitsClause_empty; auto].
eauto 3.
Qed.
Hint Resolve pf_dropLits.
Lemma resolve_out : forall r v c d, sublist (c ++ d) r
-> resolvent r (pos v :: c) (neg v :: d) v.
red; simpl; intros.
destruct (eq_lit_dec (pos v) (pos v)); try congruence.
destruct (eq_lit_dec (neg v) (neg v)); try congruence.
split; eauto.
Qed.
Lemma resolve_drop1 : forall v c, resolvent c (pos v :: c) (neg v :: nil) v.
intros; apply resolve_out; autorewrite with list; auto.
Qed.
Lemma resolve_drop2 : forall v c, resolvent c (pos v :: nil) (neg v :: c) v.
intros; apply resolve_out; autorewrite with list; auto.
Qed.
Hint Resolve resolve_drop1 resolve_drop2.
Definition negLit l := match l with pos n => neg n | neg n => pos n end.
Lemma pf_resolve_lit : forall l f c, pf f (l :: c) -> pf f (negLit l :: nil)
-> pf f c.
intros.
destruct l; simpl in *.
assert (resolvent c (pos n :: c) (neg n :: nil) n) by auto; eauto 3.
assert (resolvent c (pos n :: nil) (neg n :: c) n) by auto; eauto 3.
Qed.
Hint Resolve pf_resolve_lit.
Lemma dpll_h_None_pf_assume : forall f n l, dpll_h f l n = None
-> pf (dropLits f (negate l)) nil.
induction n; simpl; intros.
{
destruct (okFormula l f) eqn:?; try congruence.
edestruct okFormula_false_ex as [? [] ]; eauto 3.
}
{
destruct (okFormula l f) eqn:?.
destruct (dpll_h f (l ++ true :: nil) n) eqn:?; try congruence.
{
assert (pf (dropLits f (negate l))
(mkLit (negb true) (length l) :: nil)) by auto.
assert (pf (dropLits f (negate l))
(mkLit (negb false) (length l) :: nil)) by auto.
simpl in *; eauto 3.
}
{
edestruct okFormula_false_ex as [? [] ]; eauto 3.
}
}
Qed.
Theorem dpll_None_pf : forall f n, dpll n f = None -> pf f nil.
unfold dpll; intros.
replace (pf f nil) with (pf (dropLits f (negate nil)) nil).
eapply dpll_h_None_pf_assume; eauto 3.
unfold negate; simpl.
rewrite dropLits_nil; auto.
Qed.
(*=============================================================================
* refutable <-> pf
*===========================================================================*)
Theorem refutable_pf : forall f, refutable f nil -> pf f nil.
intros; edestruct refutable_dpll_None'; eauto 2.
eapply dpll_None_pf; eauto 2.
Qed.
Lemma entails_nil_refutable : forall f, entails f nil -> refutable f nil.
intros.
eapply dpll_refutable with (numVarsFormula f); eauto.
destruct (dpll (numVarsFormula f) f) eqn:?; auto.
assert (interpFormula (m2i l) f = true).
solve [eapply dpll_Some_interp; eauto 3].
apply H in H0; simpl in *; congruence.
Qed.
Theorem pf_refutable : forall f, pf f nil -> refutable f nil.
intros; apply entails_nil_refutable, pf_sound; auto.
Qed.