Skip to content

Latest commit

 

History

History
215 lines (178 loc) · 4.51 KB

File metadata and controls

215 lines (178 loc) · 4.51 KB
comments difficulty edit_url tags
true
Medium
Array
Binary Search
Prefix Sum
Sliding Window

中文文档

Description

Given an array of integers nums and an integer k, return the number of contiguous subarrays where the product of all the elements in the subarray is strictly less than k.

 

Example 1:

Input: nums = [10,5,2,6], k = 100
Output: 8
Explanation: The 8 subarrays that have product less than 100 are:
[10], [5], [2], [6], [10, 5], [5, 2], [2, 6], [5, 2, 6]
Note that [10, 5, 2] is not included as the product of 100 is not strictly less than k.

Example 2:

Input: nums = [1,2,3], k = 0
Output: 0

 

Constraints:

  • 1 <= nums.length <= 3 * 104
  • 1 <= nums[i] <= 1000
  • 0 <= k <= 106

Solutions

Solution 1

Python3

class Solution:
    def numSubarrayProductLessThanK(self, nums: List[int], k: int) -> int:
        ans, s, j = 0, 1, 0
        for i, v in enumerate(nums):
            s *= v
            while j <= i and s >= k:
                s //= nums[j]
                j += 1
            ans += i - j + 1
        return ans

Java

class Solution {
    public int numSubarrayProductLessThanK(int[] nums, int k) {
        int ans = 0;
        for (int i = 0, j = 0, s = 1; i < nums.length; ++i) {
            s *= nums[i];
            while (j <= i && s >= k) {
                s /= nums[j++];
            }
            ans += i - j + 1;
        }
        return ans;
    }
}

C++

class Solution {
public:
    int numSubarrayProductLessThanK(vector<int>& nums, int k) {
        int ans = 0;
        for (int i = 0, j = 0, s = 1; i < nums.size(); ++i) {
            s *= nums[i];
            while (j <= i && s >= k) s /= nums[j++];
            ans += i - j + 1;
        }
        return ans;
    }
};

Go

func numSubarrayProductLessThanK(nums []int, k int) int {
	ans := 0
	for i, j, s := 0, 0, 1; i < len(nums); i++ {
		s *= nums[i]
		for ; j <= i && s >= k; j++ {
			s /= nums[j]
		}
		ans += i - j + 1
	}
	return ans
}

TypeScript

function numSubarrayProductLessThanK(nums: number[], k: number): number {
    let ans = 0;
    for (let i = 0, j = 0, s = 1; i < nums.length; ++i) {
        s *= nums[i];
        while (j <= i && s >= k) {
            s /= nums[j++];
        }
        ans += i - j + 1;
    }
    return ans;
}

Rust

impl Solution {
    pub fn num_subarray_product_less_than_k(nums: Vec<i32>, k: i32) -> i32 {
        if k <= 1 {
            return 0;
        }

        let mut res = 0;
        let mut product = 1;
        let mut i = 0;
        nums.iter().enumerate().for_each(|(j, v)| {
            product *= v;
            while product >= k {
                product /= nums[i];
                i += 1;
            }
            res += j - i + 1;
        });
        res as i32
    }
}

JavaScript

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
var numSubarrayProductLessThanK = function (nums, k) {
    const n = nums.length;
    let ans = 0;
    let s = 1;
    for (let i = 0, j = 0; i < n; ++i) {
        s *= nums[i];
        while (j <= i && s >= k) {
            s = Math.floor(s / nums[j++]);
        }
        ans += i - j + 1;
    }
    return ans;
};

Kotlin

class Solution {
    fun numSubarrayProductLessThanK(nums: IntArray, k: Int): Int {
        var left = 0
        var count = 0
        var product = 1
        nums.forEachIndexed { right, num ->
            product *= num
            while (product >= k && left <= right) {
                product /= nums[left++]
            }
            count += right - left + 1
        }
        return count
    }
}