This repository has been archived by the owner on Jan 15, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 533
/
test_models_albert.py
178 lines (163 loc) · 8.18 KB
/
test_models_albert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import pytest
import numpy as np
from numpy.testing import assert_allclose
import mxnet as mx
import tempfile
from gluonnlp.models.albert import AlbertModel, AlbertForMLM, AlbertForPretrain,\
list_pretrained_albert, get_pretrained_albert
mx.npx.set_np()
def get_test_cfg():
vocab_size = 500
num_token_types = 3
num_layers = 3
num_heads = 2
units = 64
hidden_size = 96
hidden_dropout_prob = 0.0
attention_dropout_prob = 0.0
cfg = AlbertModel.get_cfg().clone()
cfg.defrost()
cfg.MODEL.vocab_size = vocab_size
cfg.MODEL.num_token_types = num_token_types
cfg.MODEL.units = units
cfg.MODEL.hidden_size = hidden_size
cfg.MODEL.num_heads = num_heads
cfg.MODEL.num_layers = num_layers
cfg.MODEL.hidden_dropout_prob = hidden_dropout_prob
cfg.MODEL.attention_dropout_prob = attention_dropout_prob
return cfg
@pytest.mark.parametrize('static_alloc,static_shape', [(False, False),
(True, True)])
@pytest.mark.parametrize('compute_layout', ['auto', 'NT', 'TN'])
def test_albert_backbone(static_alloc, static_shape, compute_layout):
batch_size = 3
cfg = get_test_cfg()
cfg.defrost()
cfg.MODEL.compute_layout = compute_layout
cfg.freeze()
model = AlbertModel.from_cfg(cfg, use_pooler=True)
model.initialize()
model.hybridize(static_alloc=static_alloc, static_shape=static_shape)
cfg_tn = cfg.clone()
cfg_tn.defrost()
cfg_tn.MODEL.layout = 'TN'
cfg_tn.freeze()
model_tn = AlbertModel.from_cfg(cfg_tn, use_pooler=True)
model_tn.share_parameters(model.collect_params())
model_tn.hybridize(static_alloc=static_alloc, static_shape=static_shape)
for seq_length in [64, 96]:
valid_length = mx.np.random.randint(seq_length // 2, seq_length, (batch_size,))
inputs = mx.np.random.randint(0, cfg.MODEL.vocab_size, (batch_size, seq_length))
token_types = mx.np.random.randint(0, cfg.MODEL.num_token_types, (batch_size, seq_length))
contextual_embedding, pooled_out = model(inputs, token_types, valid_length)
contextual_embedding_tn, pooled_out_tn = model_tn(inputs.T, token_types.T, valid_length)
# Verify layout
assert_allclose(np.swapaxes(contextual_embedding_tn.asnumpy(), 0, 1),
contextual_embedding.asnumpy(), 1E-4, 1E-4)
assert_allclose(pooled_out_tn.asnumpy(), pooled_out.asnumpy(), 1E-4, 1E-4)
assert contextual_embedding.shape == (batch_size, seq_length, cfg.MODEL.units)
assert pooled_out.shape == (batch_size, cfg.MODEL.units)
# Ensure the embeddings that exceed valid_length are masked
contextual_embedding_np = contextual_embedding.asnumpy()
pooled_out_np = pooled_out.asnumpy()
for i in range(batch_size):
ele_valid_length = valid_length[i].asnumpy()
assert_allclose(contextual_embedding_np[i, ele_valid_length:],
np.zeros_like(contextual_embedding_np[i, ele_valid_length:]),
1E-5, 1E-5)
# Ensure that the content are correctly masked
new_inputs = mx.np.concatenate([inputs, inputs[:, :5]], axis=-1)
new_token_types = mx.np.concatenate([token_types, token_types[:, :5]], axis=-1)
new_contextual_embedding, new_pooled_out = \
model(new_inputs, new_token_types, valid_length)
new_contextual_embedding_np = new_contextual_embedding.asnumpy()
new_pooled_out_np = new_pooled_out.asnumpy()
for i in range(batch_size):
ele_valid_length = valid_length[i].asnumpy()
assert_allclose(new_contextual_embedding_np[i, :ele_valid_length],
contextual_embedding_np[i, :ele_valid_length], 1E-5, 1E-5)
assert_allclose(new_pooled_out_np, pooled_out_np, 1E-4, 1E-4)
@pytest.mark.parametrize('compute_layout', ['auto', 'NT', 'TN'])
@mx.use_np
def test_albert_for_mlm_model(compute_layout):
batch_size = 3
cfg = get_test_cfg()
cfg.defrost()
cfg.MODEL.compute_layout = compute_layout
cfg.freeze()
albert_mlm_model = AlbertForMLM(backbone_cfg=cfg)
albert_mlm_model.initialize()
albert_mlm_model.hybridize()
cfg_tn = cfg.clone()
cfg_tn.defrost()
cfg_tn.MODEL.layout = 'TN'
cfg_tn.freeze()
albert_mlm_tn_model = AlbertForMLM(backbone_cfg=cfg_tn)
albert_mlm_tn_model.share_parameters(albert_mlm_model.collect_params())
albert_mlm_tn_model.hybridize()
num_mask = 16
seq_length = 64
inputs = mx.np.random.randint(0, cfg.MODEL.vocab_size, (batch_size, seq_length))
token_types = mx.np.random.randint(0, cfg.MODEL.num_token_types, (batch_size, seq_length))
valid_length = mx.np.random.randint(seq_length // 2, seq_length, (batch_size,))
masked_positions = mx.np.random.randint(0, seq_length // 2, (batch_size, num_mask))
contextual_embeddings, pooled_out, mlm_score = albert_mlm_model(inputs, token_types, valid_length, masked_positions)
contextual_embeddings_tn, pooled_out_tn, mlm_score_tn = albert_mlm_tn_model(inputs.T, token_types.T, valid_length, masked_positions)
assert_allclose(np.swapaxes(contextual_embeddings_tn.asnumpy(), 0, 1),
contextual_embeddings.asnumpy(), 1E-4, 1E-4)
assert_allclose(pooled_out_tn.asnumpy(), pooled_out.asnumpy(), 1E-4, 1E-4)
assert_allclose(mlm_score_tn.asnumpy(), mlm_score.asnumpy(), 1E-4, 1E-4)
assert mlm_score.shape == (batch_size, num_mask, cfg.MODEL.vocab_size)
@pytest.mark.parametrize('compute_layout', ['auto', 'NT', 'TN'])
def test_albert_for_pretrain_model(compute_layout):
batch_size = 3
cfg = get_test_cfg()
cfg.defrost()
cfg.MODEL.compute_layout = compute_layout
cfg.freeze()
albert_pretrain_model = AlbertForPretrain(backbone_cfg=cfg)
albert_pretrain_model.initialize()
albert_pretrain_model.hybridize()
cfg_tn = cfg.clone()
cfg_tn.defrost()
cfg_tn.MODEL.layout = 'TN'
cfg_tn.freeze()
albert_pretrain_model_tn = AlbertForPretrain(backbone_cfg=cfg_tn)
albert_pretrain_model_tn.share_parameters(albert_pretrain_model.collect_params())
albert_pretrain_model_tn.hybridize()
num_mask = 16
seq_length = 64
inputs = mx.np.random.randint(0, cfg.MODEL.vocab_size, (batch_size, seq_length))
token_types = mx.np.random.randint(0, cfg.MODEL.num_token_types, (batch_size, seq_length))
valid_length = mx.np.random.randint(seq_length // 2, seq_length, (batch_size,))
masked_positions = mx.np.random.randint(0, seq_length // 2, (batch_size, num_mask))
contextual_embeddings, pooled_out, sop_score, mlm_score =\
albert_pretrain_model(inputs, token_types, valid_length, masked_positions)
contextual_embeddings_tn, pooled_out_tn, sop_score_tn, mlm_score_tn = \
albert_pretrain_model_tn(inputs.T, token_types.T, valid_length, masked_positions)
assert_allclose(np.swapaxes(contextual_embeddings_tn.asnumpy(), 0, 1),
contextual_embeddings.asnumpy(), 1E-4, 1E-4)
assert_allclose(pooled_out_tn.asnumpy(), pooled_out.asnumpy(), 1E-4, 1E-4)
assert_allclose(sop_score.asnumpy(), sop_score_tn.asnumpy(), 1E-4, 1E-4)
assert_allclose(mlm_score.asnumpy(), mlm_score_tn.asnumpy(), 1E-4, 1E-4)
assert mlm_score.shape == (batch_size, num_mask, cfg.MODEL.vocab_size)
assert sop_score.shape == (batch_size, 2)
def test_list_pretrained_albert():
assert len(list_pretrained_albert()) > 0
@pytest.mark.slow
@pytest.mark.remote_required
@pytest.mark.parametrize('model_name', list_pretrained_albert())
def test_albert_get_pretrained(model_name):
assert len(list_pretrained_albert()) > 0
with tempfile.TemporaryDirectory() as root:
cfg, tokenizer, backbone_params_path, mlm_params_path =\
get_pretrained_albert(model_name, load_backbone=True, load_mlm=True, root=root)
assert cfg.MODEL.vocab_size == len(tokenizer.vocab)
albert_model = AlbertModel.from_cfg(cfg)
albert_model.load_parameters(backbone_params_path)
albert_mlm_model = AlbertForMLM(cfg)
if mlm_params_path is not None:
albert_mlm_model.load_parameters(mlm_params_path)
# Just load the backbone
albert_mlm_model = AlbertForMLM(cfg)
albert_mlm_model.backbone_model.load_parameters(backbone_params_path)