-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
162 lines (134 loc) · 6.16 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from __future__ import annotations
import argparse
import os
import warnings
import flax.jax_utils
import jax
import numpy as np
import pandas as pd
import safe as sf
import tqdm
import wandb
from flax.jax_utils import unreplicate
from flax.training.common_utils import shard, shard_prng_key
from flax.training.train_state import TrainState
from rdkit import Chem
from transformers import FlaxGPT2LMHeadModel, PreTrainedTokenizerBase
from utils import AverageMeter, Evaluator
from dataset import create_train_dataloader
from training import create_train_state, generation_step, training_step
warnings.filterwarnings("ignore")
def evaluate(
args: argparse.Namespace,
step: int,
epoch: int,
state: TrainState,
evaluator: Evaluator,
tokenizer: PreTrainedTokenizerBase,
eval_batches: int,
):
tokens = np.array([[tokenizer.bos_token_id]] * args.batch_size, dtype=np.int32)
tokens = shard(tokens)
generated, average_meter = [], AverageMeter()
for i in tqdm.trange(eval_batches, desc="Generation", dynamic_ncols=True):
rng = shard_prng_key(epoch + jax.random.PRNGKey(i))
preds, metrics = generation_step(state, tokens, rng, args.max_length)
average_meter.update(**unreplicate(metrics))
for pred in jax.device_get(preds).reshape(-1, *preds.shape[2:]):
pred = pred[np.cumsum(pred == tokenizer.eos_token_id) < 1]
generated.append(tokenizer.decode(pred.tolist(), skip_special_tokens=True))
# Evaluate the generated mols with considering the format type. After calculating
# validity and uniqueness of the generated samples, the invalid and duplicated
# samples will be removed for ADMET-AI evaluation.
smiles = [sf.decode(x, canonical=False, ignore_errors=True) for x in generated]
mols = pd.DataFrame((generated, smiles)).T
mols.columns = ["safe", "smiles"]
mols["Validity"] = mols["smiles"].notnull()
mols["Uniqueness"] = mols["smiles"].nunique() / mols["smiles"].notnull().sum()
mols = mols[mols.smiles.notnull()].drop_duplicates("smiles")
admet = evaluator([x for x in smiles if x and Chem.MolFromSmiles(x)])
admet = pd.merge(mols, admet, left_on="smiles", right_index=True, how="outer")
# Compute the average metrics of the evaluated results and log them with the
# validation scores.
metrics = average_meter.summary(prefix="valid/")
for name in args.eval_metrics:
metrics[f"valid/{name}"] = admet[name].mean()
metrics["epoch"] = epoch
wandb.log(metrics, step)
def main(args: argparse.Namespace):
evaluator = Evaluator()
model = FlaxGPT2LMHeadModel.from_pretrained("datamol-io/safe-gpt", from_pt=True)
tokenizer = sf.SAFETokenizer.from_pretrained("datamol-io/safe-gpt").get_pretrained()
dataloader = create_train_dataloader(args, tokenizer)
state = create_train_state(args, model, steps_per_epoch=len(dataloader))
state = flax.jax_utils.replicate(state)
wandb.init(name=args.name, project=args.project, config=args)
average_meter, step = AverageMeter(use_latest=["learning_rate"]), 0
# Before training, we will evaluate the initial performance of the model.
evaluate(
args=args,
step=0,
epoch=0,
state=state,
evaluator=evaluator,
tokenizer=tokenizer,
eval_batches=args.eval_batches,
)
for epoch in range(args.epochs):
for batch in tqdm.tqdm(dataloader, desc=f"Epoch {epoch}", dynamic_ncols=True):
state, metrics = training_step(state, shard(jax.tree.map(np.array, batch)))
average_meter.update(**unreplicate(metrics))
step += 1
if args.log_interval > 0 and step % args.log_interval == 0:
metrics = average_meter.summary(prefix="train/")
metrics["epoch"] = step / len(dataloader)
wandb.log(metrics, step)
if (
args.eval_interval > 0
and (epoch + 1) % args.eval_interval == 0
or epoch == args.epochs - 1
):
evaluate(
args=args,
step=step,
epoch=epoch + 1,
state=state,
evaluator=evaluator,
tokenizer=tokenizer,
eval_batches=args.eval_batches,
)
os.makedirs(args.output_dir, exist_ok=True)
model.params = unreplicate(state.params["act"])
model.save_pretrained(os.path.join(args.output_dir, args.name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset")
parser.add_argument("--batch-size", type=int, default=128)
parser.add_argument("--num-workers", type=int, default=16)
parser.add_argument("--target-columns", nargs="+")
parser.add_argument("--max-length", type=int, default=128)
parser.add_argument("--penalty-beta", type=float, default=0.1)
parser.add_argument("--eval-metrics", nargs="+", default=["Validity"])
parser.add_argument("--use-moco", action="store_true", default=False)
parser.add_argument("--jacmom", type=float, default=0.99)
parser.add_argument("--lammom", type=float, default=0.5)
parser.add_argument("--lamreg", type=float, default=0.1)
parser.add_argument("--learning-rate", type=float, default=5e-5)
parser.add_argument("--weight-decay", type=float, default=0.01)
parser.add_argument("--adam-b1", type=float, default=0.9)
parser.add_argument("--adam-b2", type=float, default=0.999)
parser.add_argument("--adam-eps", type=float, default=1e-8)
parser.add_argument("--clip-grad", type=float, default=0.0)
parser.add_argument("--warmup-ratio", type=float, default=0.1)
parser.add_argument("--epochs", type=int, default=10)
parser.add_argument("--log-interval", type=int, default=50)
parser.add_argument("--eval-interval", type=int, default=1)
parser.add_argument("--eval-batches", type=int, default=4)
parser.add_argument("--split-seed", type=int, default=0)
parser.add_argument("--shuffle-seed", type=int, default=0)
parser.add_argument("--project")
parser.add_argument("--name")
parser.add_argument("--ipaddr")
parser.add_argument("--hostname")
parser.add_argument("--output-dir", default="./")
main(parser.parse_args())