-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrainNet.py
263 lines (205 loc) · 12 KB
/
trainNet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jun 14 22:07:04 2022
@author: dl2820
"""
#%%
from utils.predictiveNet import PredictiveNet
from utils.agent import RandomActionAgent
from utils.env import make_env
from utils.figures import TrainingFigure
from utils.figures import SpontTrajectoryFigure
from analysis.OfflineTrajectoryAnalysis import OfflineTrajectoryAnalysis
import argparse
#TODO: get rid of these dependencies
import numpy as np
import matplotlib.pyplot as plt
import torch
import random
# Parse arguments
parser = argparse.ArgumentParser()
## General parameters
parser.add_argument("--env", default='MiniGrid-LRoom-18x18-v0',
help="name of the environment to train on (Default: MiniGrid-LRoom-18x18-v0)")
# parser.add_argument("--agent", default='RandomActionAgent',
# help="name of the environment to train on (Default: RandomActionAgent)")
parser.add_argument("--pRNNtype", default='thRNN_2win',
help="which pRNN (Default: thRNN_2win)")
parser.add_argument("--savefolder", default='',
help="Where to save the net? (foldername/)")
parser.add_argument("--loadfolder", default='',
help="Where to load the net? (foldername/)")
parser.add_argument("--numepochs", default=30, type=int,
help="how many training epochs? (Default: 40)")
parser.add_argument("--seqdur", default=500, type=int,
help="how long is each behavioral sequence? (Default: 1000")
parser.add_argument("--numtrials", default=1000, type=int,
help="many trials in an eqpoch? (Default: 1000")
parser.add_argument("--hiddensize", default=500, type=int,
help="how many hidden units? (Default: 300")
parser.add_argument("-c", "--contin", action="store_true",
help="Continue previous training?")
parser.add_argument("--load_env", default=-1, type=int,
help="Load Environment for continued Training. Specify unique env id")
parser.add_argument("-s", "--seed", default=8, type=int,
help="Random Seed? (Default: 8)")
parser.add_argument("--lr", default=3e-3, type=float, #former default:2e-4 (not relative)
help="Learning Rate? (Relative to init sqrt(1/k) for each layer) (Default: 1e-3)")
parser.add_argument("--weight_decay", default=3e-3, type=float, #former default:6e-7 (not relative)
help="Weight Decay? (Relative to learning rate) (Default: 0)")
parser.add_argument("--bptttrunc", default=1e8, type=int,
help="BPTT Truncation window? (Default: 0)")
parser.add_argument("--ntimescale", default=2, type=float,
help="Neural timescale (Default: 2 timesteps)")
parser.add_argument("--dropout", default=0.15, type=float,
help="Dropout probability (Default: 0)")
parser.add_argument("--noisemean", default=0, type=float,
help="Mean offset for internal noise (Default: 0)")
parser.add_argument("--noisestd", default=0.03, type=float,
help="Std of internal noise (Default: 0)")
parser.add_argument("-f", "--sparsity", default=0.5, type=float,
help="Activation sparsity (via layer norm, irrelevant for non-LN networks) (Default: 0.5)")
parser.add_argument('--trainBias', action='store_true', default=False)
parser.add_argument("--bias_lr", default=1, type=float, #former default:2e-4 (not relative)
help="Bias Learning Rate? (Relative to learning rate) (Default: 1)")
parser.add_argument('--identityInit', action='store_true', default=False)
parser.add_argument("--namext", default='',
help="Extension to the savename?")
parser.add_argument("--actenc", default='OnehotHD',
help="Action encoding, options: OnehotHD (default),SpeedHD, Onehot, Velocities")
parser.add_argument('--saveTrainData', action='store_true', default=True)
parser.add_argument('--no-saveTrainData', dest='saveTrainData', action='store_false')
args = parser.parse_args()
savename = args.pRNNtype + '-' + args.namext + '-s' + str(args.seed)
figfolder = 'nets/'+args.savefolder+'/trainfigs/'+savename
analysisfolder = 'nets/'+args.savefolder+'/analysis/'+savename
#%%
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
if args.contin:
predictiveNet = PredictiveNet.loadNet(args.loadfolder+savename)
if args.env == '':
env = predictiveNet.loadEnvironment(args.load_env)
predictiveNet.addEnvironment(env)
else:
env = make_env(args.env)
predictiveNet.addEnvironment(env)
agentname = 'RandomActionAgent'
action_probability = np.array([0.15,0.15,0.6,0.1,0,0,0])
agent = RandomActionAgent(env.action_space,action_probability)
else:
env = make_env(args.env)
agentname = 'RandomActionAgent'
action_probability = np.array([0.15,0.15,0.6,0.1,0,0,0])
agent = RandomActionAgent(env.action_space,action_probability)
predictiveNet = PredictiveNet(env,
hidden_size=args.hiddensize,
pRNNtype=args.pRNNtype,
actionEncoding=args.actenc,
learningRate = args.lr,
bptttrunc = args.bptttrunc,
weight_decay = args.weight_decay,
neuralTimescale = args.ntimescale,
dropp=args.dropout,
trainNoiseMeanStd= (args.noisemean,args.noisestd),
f = args.sparsity,
trainBias = args.trainBias,
bias_lr = args.bias_lr,
identityInit = args.identityInit)
predictiveNet.seed = args.seed
predictiveNet.trainArgs = args
predictiveNet.plotSampleTrajectory(env,agent,
savename=savename+'exTrajectory_untrained',
savefolder=figfolder)
predictiveNet.savefolder = args.savefolder
predictiveNet.savename = savename
#%% Training Epoch
#Consider these as "trainingparameters" class/dictionary
numepochs = args.numepochs
sequence_duration = args.seqdur
num_trials = args.numtrials
predictiveNet.trainingCompleted = False
if predictiveNet.numTrainingTrials == -1:
#Calculate initial spatial metrics etc
print('Training Baseline')
predictiveNet.trainingEpoch(env, agent,
sequence_duration=sequence_duration,
num_trials=1)
print('Calculting Spatial Representation...')
place_fields, SI, decoder = predictiveNet.calculateSpatialRepresentation(env,agent,
trainDecoder=True,saveTrainingData=True,
bitsec= False,
calculatesRSA = True, sleepstd=0.03)
predictiveNet.plotTuningCurvePanel(savename=savename,savefolder=figfolder)
print('Calculting Decoding Performance...')
predictiveNet.calculateDecodingPerformance(env,agent,decoder,
savename=savename, savefolder=figfolder,
saveTrainingData=True)
#predictiveNet.plotDelayDist(env, agent, decoder)
#TODO: Put in time counter here and ETA...
#TODO: take this out later. for backwards compatibility
if hasattr(predictiveNet, 'numTrainingEpochs') is False:
predictiveNet.numTrainingEpochs = int(predictiveNet.numTrainingTrials/num_trials)
while predictiveNet.numTrainingEpochs<numepochs:
print(f'Training Epoch {predictiveNet.numTrainingEpochs}')
predictiveNet.trainingEpoch(env, agent,
sequence_duration=sequence_duration,
num_trials=num_trials)
print('Calculting Spatial Representation...')
place_fields, SI, decoder = predictiveNet.calculateSpatialRepresentation(env,agent,
trainDecoder=True, trainHDDecoder = True,
saveTrainingData=True, bitsec= False,
calculatesRSA = True, sleepstd=0.03)
print('Calculting Decoding Performance...')
predictiveNet.calculateDecodingPerformance(env,agent,decoder,
savename=savename, savefolder=figfolder,
saveTrainingData=True)
predictiveNet.plotLearningCurve(savename=savename,savefolder=figfolder,
incDecode=True)
#predictiveNet.plotSampleTrajectory(env,agent,savename=savename,savefolder=figfolder)
predictiveNet.plotTuningCurvePanel(savename=savename,savefolder=figfolder)
OTA = OfflineTrajectoryAnalysis(predictiveNet,actionAgent=None, noisestd=0.03,
decoder=decoder, calculateViewSimilarity=True,
compareWake=True)
OTA.SpontTrajectoryFigure(savename+'_noise',figfolder)
#OTA.saveAnalysis(savename+'_noise',analysisfolder)
predictiveNet.addTrainingData('replay_alpha_noise',OTA.diffusionFit['alpha'])
predictiveNet.addTrainingData('replay_int_noise',OTA.diffusionFit['intercept'])
predictiveNet.addTrainingData('replay_view_noise',OTA.ViewSimilarity['meanstd_sleep'][0][0])
predictiveNet.addTrainingData('replay_coherence_noise',OTA.spatialCoherence_SLEEP['meanCoherence'])
predictiveNet.addTrainingData('replay_extent_noise',OTA.spatialCoherence_SLEEP['meanExtent'])
predictiveNet.addTrainingData('replay_coherence_wake',OTA.spatialCoherence_WAKE['meanCoherence'])
predictiveNet.addTrainingData('replay_extent_wake',OTA.spatialCoherence_WAKE['meanExtent'])
predictiveNet.addTrainingData('replay_view_wake',OTA.ViewSimilarity['meanstd_wake'][0][0])
OTA = OfflineTrajectoryAnalysis(predictiveNet,actionAgent=agent, noisestd=0.03,
decoder=decoder, calculateViewSimilarity=True,
compareWake=True)
OTA.SpontTrajectoryFigure(savename+'_query',figfolder)
#OTA.saveAnalysis(savename+'_query',analysisfolder)
predictiveNet.addTrainingData('replay_alpha_query',OTA.diffusionFit['alpha'])
predictiveNet.addTrainingData('replay_int_query',OTA.diffusionFit['intercept'])
predictiveNet.addTrainingData('replay_view_query',OTA.ViewSimilarity['meanstd_sleep'][0][0])
predictiveNet.addTrainingData('replay_coherence_query',OTA.spatialCoherence_SLEEP['meanCoherence'])
predictiveNet.addTrainingData('replay_extent_query',OTA.spatialCoherence_SLEEP['meanExtent'])
OTA = OfflineTrajectoryAnalysis(predictiveNet, noisestd=0.03,
decoder=decoder, calculateViewSimilarity=True,
withAdapt=True,b_adapt = 0.3, tau_adapt=8,
compareWake=True)
OTA.SpontTrajectoryFigure(savename+'_adapt',figfolder)
#OTA.saveAnalysis(savename+'_adapt',analysisfolder)
predictiveNet.addTrainingData('replay_alpha_adapt',OTA.diffusionFit['alpha'])
predictiveNet.addTrainingData('replay_int_adapt',OTA.diffusionFit['intercept'])
predictiveNet.addTrainingData('replay_view_adapt',OTA.ViewSimilarity['meanstd_sleep'][0][0])
predictiveNet.addTrainingData('replay_coherence_adapt',OTA.spatialCoherence_SLEEP['meanCoherence'])
predictiveNet.addTrainingData('replay_extent_adapt',OTA.spatialCoherence_SLEEP['meanExtent'])
plt.show()
plt.close('all')
predictiveNet.saveNet(args.savefolder+savename)
predictiveNet.trainingCompleted = True
TrainingFigure(predictiveNet,savename=savename,savefolder=figfolder)
#If the user doesn't want to save all that training data, delete it except the last one
if args.saveTrainData is False:
predictiveNet.TrainingSaver = predictiveNet.TrainingSaver.drop(predictiveNet.TrainingSaver.index[:-1])
predictiveNet.saveNet(args.savefolder+savename)