-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnumpysane_pywrap.py
1481 lines (1195 loc) · 64.9 KB
/
numpysane_pywrap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
r'''Python-wrap C code with broadcasting awareness
* SYNOPSIS
Let's implement a broadcastable and type-checked inner product that is
- Written in C (i.e. it is fast)
- Callable from python using numpy arrays (i.e. it is convenient)
We write a bit of python to generate the wrapping code. "genpywrap.py":
import numpy as np
import numpysane as nps
import numpysane_pywrap as npsp
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
m.function( "inner",
"Inner product pywrapped with npsp",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
m.write()
We run this, and save the output to "inner_pywrap.c":
python3 genpywrap.py > inner_pywrap.c
We build this into a python module:
COMPILE=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {} -I{}'.format(*[conf[x] for x in ('CC',
'CFLAGS',
'CCSHARED',
'INCLUDEPY')]))"`)
LINK=(`python3 -c "
import sysconfig
conf = sysconfig.get_config_vars()
print('{} {} {}'.format(*[conf[x] for x in ('BLDSHARED',
'BLDLIBRARY',
'LDFLAGS')]))"`)
EXT_SUFFIX=`python3 -c "
import sysconfig
print(sysconfig.get_config_vars('EXT_SUFFIX')[0])"`
${COMPILE[@]} -c -o inner_pywrap.o inner_pywrap.c
${LINK[@]} -o innerlib$EXT_SUFFIX inner_pywrap.o
Here we used the build commands directly. This could be done with
setuptools/distutils instead; it's a normal extension module. And now we can
compute broadcasted inner products from a python script "tst.py":
import numpy as np
import innerlib
print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)))
Running it to compute inner([0,1,2,3],[0,1,2,3]) and inner([0,1,2,3],[4,5,6,7]):
$ python3 tst.py
[14. 38.]
* DESCRIPTION
This module provides routines to python-wrap existing C code by generating C
sources that define the wrapper python extension module.
To create the wrappers we
1. Instantiate a new numpysane_pywrap.module class
2. Call module.function() for each wrapper function we want to add to this
module
3. Call module.write() to write the C sources defining this module to standard
output
The sources can then be built and executed normally, as any other python
extension module. The resulting functions are called as one would expect:
output = f_one_output (input0, input1, ...)
(output0, output1, ...) = f_multiple_outputs(input0, input1, ...)
depending on whether we declared a single output, or multiple outputs (see
below). It is also possible to pre-allocate the output array(s), and call the
functions like this (see below):
output = np.zeros(...)
f_one_output (input0, input1, ..., out = output)
output0 = np.zeros(...)
output1 = np.zeros(...)
f_multiple_outputs(input0, input1, ..., out = (output0, output1))
Each wrapped function is broadcasting-aware. The normal numpy broadcasting rules
(as described in 'broadcast_define' and on the numpy website:
http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) apply. In
summary:
- Dimensions are aligned at the end of the shape list, and must match the
prototype
- Extra dimensions left over at the front must be consistent for all the
input arguments, meaning:
- All dimensions of length != 1 must match
- Dimensions of length 1 match corresponding dimensions of any length in
other arrays
- Missing leading dimensions are implicitly set to length 1
- The output(s) have a shape where
- The trailing dimensions match the prototype
- The leading dimensions come from the extra dimensions in the inputs
When we create a wrapper function, we only define how to compute a single
broadcasted slice. If the generated function is called with higher-dimensional
inputs, this slice code will be called multiple times. This broadcast loop is
produced by the numpysane_pywrap generator automatically. The generated code
also
- parses the python arguments
- generates python return values
- validates the inputs (and any pre-allocated outputs) to make sure the given
shapes and types all match the declared shapes and types. For instance,
computing an inner product of a 5-vector and a 3-vector is illegal
- creates the output arrays as necessary
This code-generator module does NOT produce any code to implicitly make copies
of the input. If the inputs fail validation (unknown types given, contiguity
checks failed, etc) then an exception is raised. Copying the input is
potentially slow, so we require the user to do that, if necessary.
** Explicated example
In the synopsis we declared the wrapper module like this:
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C")
This produces a module named "innerlib". Note that the python importer will look
for this module in a file called "innerlib$EXT_SUFFIX" where EXT_SUFFIX comes
from the python configuration. This is normal behavior for python extension
modules.
A module can contain many wrapper functions. Each one is added by calling
'm.function()'. We did this:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
We declared:
- A function "inner" with the given docstring
- two inputs to this function: named 'a' and 'b'. Each is a 1-dimensional array
of length 'n', same 'n' for both arrays
- one output: a scalar
- how to compute a single inner product where all inputs and outputs are 64-bit
floating-point values: this snippet of C is included in the generated sources
verbatim
It is possible to support multiple sets of types by passing more key/value
combinations in 'Ccode_slice_eval'. Each set of types requires a different C
snippet. If the input doesn't match any known type set, an exception will be
thrown. More on the type matching below.
The length of the inner product is defined by the length of the input, in this
case 'dims_slice__a[0]'. I could have looked at 'dims_slice__b[0]' instead, but
I know it's identical: the 'prototype_input' says that both 'a' and 'b' have
length 'n', and if we're running the slice code snippet, we know that the inputs
have already been checked, and have compatible dimensionality. More on this
below.
I did not assume the data is contiguous, so I use 'strides_slice__a' and
'strides_slice__b' to index the input arrays. We could add a validation function
that accepts only contiguous input; if we did that, the slice code snippet could
assume contiguous data and ignore the strides. More on that below.
Once all the functions have been added, we write out the generated code to
standard output by invoking
m.write()
** Dimension specification
The shapes of the inputs and outputs are given in the 'prototype_input' and
'prototype_output' arguments respectively. This is similar to how this is done
in 'numpysane.broadcast_define()': each prototype is a tuple of shapes, one for
each argument. Each shape is given as a tuple of sizes for each expected
dimension. Each size can be either
- a positive integer if we know the expected dimension size beforehand, and only
those sizes are accepted
- a string that names the dimension. Any size could be accepted for a named
dimension, but for any given named dimension, the sizes must match across all
inputs and outputs
Unlike 'numpysane.broadcast_define()', the shapes of both inputs and outputs
must be defined here: the output shape may not be omitted.
The common special case of a single output is supported: this one output is
specified in 'prototype_output' as a single shape, instead of a tuple of shapes.
This also affects whether the resulting python function returns the one output
or a tuple of outputs.
Examples:
A function taking in some 2D vectors and the same number of 3D vectors:
prototype_input = (('n',2), ('n',3))
A function producing a single 2D vector:
prototype_output = (2,)
A function producing 3 outputs: some number of 2D vectors, a single 3D vector
and a scalar:
prototype_output = (('n',2), (3,), ())
Note that when creating new output arrays, all the dimensions must be known from
the inputs. For instance, given this, we cannot create the output:
prototype_input = ((2,), ('n',))
prototype_output = (('m',), ('m', 'm'))
I have the inputs, so I know 'n', but I don't know 'm'. When calling a function
like this, it is required to pass in pre-allocated output arrays instead of
asking the wrapper code to create new ones. See below.
** In-place outputs
As with 'numpysane.broadcast_define()', the caller of the generated python
function may pre-allocate the output and pass it in the 'out' kwarg to be
filled-in. Sometimes this is required if we want to avoid extra copying of data.
This is also required if the output prototypes have any named dimensions not
present in the input prototypes: in this case we dont know how large the output
arrays should be, so we can't create them.
If a wrapped function is called this way, we check that the dimensions and types
in the outputs match the prototype. Otherwise, we create a new output array with
the correct type and shape.
If we have multiple outputs, the in-place arrays are given as a tuple of arrays
in the 'out' kwarg. If any outputs are pre-allocated, all of them must be.
Example. Let's use the inner-product we defined earlier. We compute two sets of
inner products. We make two calls to inner(), each one broadcasted to produce
two inner products into a non-contiguous slice of an output array:
import numpy as np
import innerlib
out=np.zeros((2,2), dtype=float)
innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,0] )
innerlib.inner( 1+np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
out=out[:,1] )
print(out)
The first two inner products end up in the first column of the output, and the
next two inner products in the second column:
$ python3 tst.py
[[14. 20.]
[38. 60.]]
If we have a function "f" that produces two outputs, we'd do this:
output0 = np.zeros(...)
output1 = np.zeros(...)
f( ..., out = (output0, output1) )
** Type checking
Since C code is involved, we must be very explicit about the types of our
arrays. These types are specified in the keys of the 'Ccode_slice_eval'
argument to 'function()'. For each type specification in a key, the
corresponding value is a C code snippet to use for that type spec. The type
specs can be either
- A type known by python and acceptable to numpy as a valid dtype. In this usage
ALL inputs and ALL outputs must have this type
- A tuple of types. The elements of this tuple correspond to each input, in
order, followed by each output, in order. This allows different arguments to
have different types
It is up to the user to make sure that the C snippet they provide matches the
types that they declared.
Example. Let's extend the inner product to know about 32-bit floats and also
about producing a rounded integer inner product from 64-bit floats:
m = npsp.module( name = "innerlib",
docstring = "An inner product module in C",
header = "#include <stdint.h>")
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
np.float32:
r"""
float* out = (float*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const float*)(data_slice__a +
i*strides_slice__a[0]) *
*(const float*)(data_slice__b +
i*strides_slice__b[0]);
return true;""",
(np.float64, np.float64, np.int32):
r"""
double out = 0.0;
const int N = dims_slice__a[0];
for(int i=0; i<N; i++)
out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*(int32_t*)data_slice__output = (int32_t)round(out);
return true;""" })
** Argument validation
After the wrapping code confirms that all the shapes and types match the
prototype, it calls a user-provided validation routine once to flag any extra
conditions that are required. A common use case: we're wrapping some C code that
assumes the input data is stored contiguously in memory, so the validation
routine checks that this is true.
This code snippet is provided in the 'Ccode_validate' argument to 'function()'.
The result is returned as a boolean: if the checks pass, we return true. If the
checks fail, we return false, which will result in an exception being thrown. If
you want to throw your own, more informative exception, you can do that as usual
(by calling something like PyErr_Format()) before returning false.
If the 'Ccode_validate' argument is omitted, no additional checks are performed,
and we accept all calls that satisfied the broadcasting and type requirements.
** Contiguity checking
Since checking for memory contiguity is a very common use case for argument
validation, there are convenience macros provided:
CHECK_CONTIGUOUS__NAME()
CHECK_CONTIGUOUS_AND_SETERROR__NAME()
CHECK_CONTIGUOUS_ALL()
CHECK_CONTIGUOUS_AND_SETERROR_ALL()
The strictest, and most common usage will accept only those calls where ALL
inputs and ALL outputs are stored in contiguous memory. This can be accomplished
by defining the function like
m.function( ...,
Ccode_validate = 'return CHECK_CONTIGUOUS_AND_SETERROR_ALL();' )
As before, "NAME" refers to each individual input or output, and "ALL" checks
all of them. These all evaluate to true if the argument in question IS
contiguous. The ..._AND_SETERROR_... flavor does that, but ALSO raises an
informative exception.
Generally you want to do this in the validation routine only, since it runs only
once. But there's nothing stopping you from checking this in the computation
function too.
Note that each broadcasted slice is processed separately, so the C code being
wrapped usually only cares about each SLICE being contiguous. If the dimensions
above each slice (those being broadcasted) are not contiguous, this doesn't
break the underlying assumptions. Thus the CHECK_CONTIGUOUS_... macros only
check and report the in-slice contiguity. If for some reason you need more than
this, you should write the check yourself, using the strides_full__... and
dims_full__... arrays.
** Slice computation
The code to evaluate each broadcasted slice is provided in the required
'Ccode_slice_eval' argument to 'function()'. This argument is a dict, specifying
different flavors of the available computation, with each code snippet present
in the values of this dict. Each code snippet is wrapped into a function which
returns a boolean: true on success, false on failure. If false is ever returned,
all subsequent slices are abandoned, and an exception is thrown. As with the
validation code, you can just return false, and a generic Exception will be
thrown. Or you can throw a more informative exception yourself prior to
returning false.
** Values available to the code snippets
Each of the user-supplied code blocks is placed into a separate function in the
generated code, with identical arguments in both cases. These arguments describe
the inputs and outputs, and are meant to be used by the user code. We have
dimensionality information:
const int Ndims_full__NAME
const npy_intp* dims_full__NAME
const int Ndims_slice__NAME
const npy_intp* dims_slice__NAME
where "NAME" is the name of the input or output. The input names are given in
the 'args_input' argument to 'function()'. If we have a single output, the
output name is "output". If we have multiple outputs, their names are "output0",
"output1", ... The ...full... arguments describe the full array, that describes
ALL the broadcasted slices. The ...slice... arguments describe each broadcasted
slice separately. Under most usages, you want the ...slice... information
because the C code we're wrapping only sees one slice at a time. Ndims...
describes how many dimensions we have in the corresponding dims... arrays.
npy_intp is a long integer used internally by numpy for dimension information.
We have memory layout information:
const npy_intp* strides_full__NAME
const npy_intp* strides_slice__NAME
npy_intp sizeof_element__NAME
NAME and full/slice and npy_intp have the same meanings as before. The
strides... arrays each have length described by the corresponding dims... The
strides contain the step size in bytes, of each dimension. sizeof_element...
describes the size in bytes, of a single data element.
Finally, I have a pointer to the data itself. The validation code gets a pointer
to the start of the whole data array:
void* data__NAME
but the computation code gets a pointer to the start of the slice we're
currently looking at:
void* data_slice__NAME
If the data in the arrays is representable as a basic C type (most integers,
floats and complex numbers), then convenience macros are available to index
elements in the sliced arrays and to conveniently access the C type of the data.
These macros take into account the data type and the strides.
#define ctype__NAME ...
#define item__NAME(...) ...
For instance, if we have a 2D array 'x' containing 64-bit floats, we'll have
this:
#define ctype__x npy_float64 /* "double" on most platforms */
#define item__x(i,j) (*(ctype__x*)(data_slice__x + ...))
For more complex types (objects, vectors, strings) you'll need to deal with the
strides and the pointers yourself.
Example: I'm computing a broadcasted slice. An input array 'x' is a
2-dimensional slice of dimension (3,4) of 64-bit floating-point values. I thus
have Ndims_slice__x == 2 and dims_slice__x[] = {3,4} and sizeof_element__x == 8.
An element of this array at i,j can be accessed with either
*((double*)(data_slice__a + i*strides_slice__a[0] + j*strides_slice__a[1]))
item__a(i,j)
Both are identical. If I defined a validation function that makes sure that 'a'
is stored in contiguous memory, the computation code doesn't need to look at the
strides at all, and element at i,j can be found more simply:
((double*)data_slice__a)[ i*dims_slice__a[1] + j ]
item__a(i,j)
As you can see, the item__...() macros are much simpler, less error-prone and
are thus the preferred form.
** Specifying extra, non-broadcasted arguments
Sometimes it is desired to pass extra arguments to the C code; ones that aren't
broadcasted in any way, but are just passed verbatim by the wrapping code down
to the inner C code. We can do that with the 'extra_args' argument to
'function()'. This argument is an tuple of tuples, where each inner tuple
represents an extra argument:
(c_type, arg_name, default_value, parse_arg)
Each element is a string.
- the "c_type" is the C type of the argument; something like "int" or "double",
or "const char*"
- the "arg_name" is the name of the argument, used in both the Python and the C
levels
- the "default_value" is the value the C wrapping code will use if this argument
is omitted in the Python call. Note that this is a string used in generating
the C code, so if we have an integer with a default value of 0, we use a
string "0" and not the integer 0
- the "parse_arg" is the code used in the PyArg_ParseTupleAndKeywords() call.
See the documentation for that function.
These extra arguments are expected to be read-only, and are passed as a const*
to the validation routines and the slice computation routines. If the C type is
already a pointer (most notably if it is a string), then we do NOT dereference
it a second time.
The generated code for parsing of Python arguments sets all of these extra
arguments as being optional, using the default_value if an argument is omitted.
If one of these arguments is actually required, the corresponding logic goes
into the validation function.
When calling the resulting Python function, the extra arguments MUST be
passed-in as kwargs. These will NOT work as positional arguments.
This is most clearly explained with an example. Let's update our inner product
example to accept a "scale" numerical argument and a "scale_string" string
argument, where the scale_string is required:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= *scale * atof(scale_string);
return true;""" }
)
Now I can optionally scale the result:
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4)),
scale_string = "1.0")
[14. 38.]
>>> print(innerlib.inner( np.arange(4, dtype=float),
np.arange(8, dtype=float).reshape( 2,4),
scale = 2.0,
scale_string = "10.0"))
[280. 760.]
** Precomputing a cookie outside the slice computation
Sometimes it is useful to generate some resource once, before any of the
broadcasted slices were evaluated. The slice evaluation code could then make use
of this resource. Example: allocating memory, opening files. This is supported
using a 'cookie'. We define a structure that contains data that will be
available to all the generated functions. This structure is initialized at the
beginning, used by the slice computation functions, and then cleaned up at the
end. This is most easily described with an example. The scaled inner product
demonstrated immediately above has an inefficiency: we compute
'atof(scale_string)' once for every slice, even though the string does not
change. We should compute the atof() ONCE, and use the resulting value each
time. And we can:
m.function( "inner",
"Inner product pywrapped with numpysane_pywrap",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
extra_args = (("double", "scale", "1", "d"),
("const char*", "scale_string", "NULL", "s")),
Ccode_cookie_struct = r"""
double scale; /* from BOTH scale arguments: "scale", "scale_string" */
""",
Ccode_validate = r"""
if(scale_string == NULL)
{
PyErr_Format(PyExc_RuntimeError,
"The 'scale_string' argument is required" );
return false;
}
cookie->scale = *scale * (scale_string ? atof(scale_string) : 1.0);
return true; """,
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
*out *= cookie->scale;
return true;""" },
// Cleanup, such as free() or close() goes here
Ccode_cookie_cleanup = ''
)
We defined a cookie structure that contains one element: 'double scale'. We
compute the scale factor (from BOTH of the extra arguments) before any of the
slices are evaluated: in the validation function. Then we apply the
already-computed scale with each slice. Both the validation and slice
computation functions have the whole cookie structure available in '*cookie'. It
is expected that the validation function will write something to the cookie, and
the slice functions will read it, but this is not enforced: this structure is
not const, and both functions can do whatever they like.
If the cookie initialization did something that must be cleaned up (like a
malloc() for instance), the cleanup code can be specified in the
'Ccode_cookie_cleanup' argument to function(). Note: this cleanup code is ALWAYS
executed, even if there were errors that raise an exception, EVEN if we haven't
initialized the cookie yet. When the cookie object is first initialized, it is
filled with 0, so the cleanup code can detect whether the cookie has been
initialized or not:
m.function( ...
Ccode_cookie_struct = r"""
...
bool initialized;
""",
Ccode_validate = r"""
...
cookie->initialized = true;
return true;
""",
Ccode_cookie_cleanup = r"""
if(cookie->initialized) cleanup();
""" )
** Examples
For some sample usage, see the wrapper-generator used in the test suite:
https://github.com/dkogan/numpysane/blob/master/test/genpywrap.py
** Planned functionality
Currently, each broadcasted slice is computed sequentially. But since the slices
are inherently independent, this is a natural place to add parallelism. And
implemention this with something like OpenMP should be straightforward. I'll get
around to doing this eventually, but in the meantime, patches are welcome.
'''
import sys
import time
import numpy as np
from numpysane import NumpysaneError
import os
import re
# Technically I'm supposed to use some "resource extractor" something to unbreak
# setuptools. But I'm instead assuming that this was installed via Debian or by
# using the eager_resources tag in setup(). This allows files to remain files,
# and to appear in a "normal" directory, where this script can grab them and use
# them
#
# And I try two different directories, in case I'm running in-place
#
# And pip does something yet different, which I support in a hacky way. This is
# a mess
_pywrap_path = [ # in-place: running from the source tree
os.path.dirname( __file__ ) + '/pywrap-templates',
# distro: /usr/share/...
sys.prefix + '/share/python-numpysane/pywrap-templates' ]
# pip: /home/whoever/.local/share/...
_m = re.match(r"(/home/[^/]+/\.local)/lib/", __file__)
if _m is not None:
_local_prefix = _m.group(1)
_pywrap_path.append( _local_prefix + '/share/python-numpysane/pywrap-templates')
for p in _pywrap_path:
_module_header_filename = p + '/pywrap_module_header.c'
_module_footer_filename = p + '/pywrap_module_footer_generic.c'
_function_filename = p + '/pywrap_function_generic.c'
if os.path.exists(_module_header_filename):
break
else:
raise NumpysaneError("Couldn't find pywrap templates! Looked in {}".format(_pywrap_path))
def _quote(s, convert_newlines=False):
r'''Quote string for inclusion in C code
There should be a library for this. Hopefuly this is correct.
'''
s = s.replace('\\', '\\\\') # Pass all \ through verbatim
if convert_newlines:
s = s.replace('\n', '\\n') # All newlines -> \n
s = s.replace('"', '\\"') # Quote all "
return s
def _substitute(s, **kwargs):
r'''format() with specific semantics
- {xxx} substitutions found in kwargs are made
- {xxx} expressions not found in kwargs are left as is
- {{ }} escaping is not respected: any '{xxx}' is replaced
Otherwise they're left alone (useful for C code)
'''
for k in kwargs.keys():
s = s.replace('{' + k + '}', kwargs[k])
return s
class module:
def __init__(self, name, docstring, header=''):
r'''Initialize the python-wrapper-generator
SYNOPSIS
import numpysane_pywrap as npsp
m = npsp.module( name = "wrapped_library",
docstring = r"""wrapped by numpysane_pywrap
Does this thing and does that thing""",
header = '#include "library.h"')
ARGUMENTS
- name
The name of the python module we're creating
- docstring
The docstring for this module
- header
Optional, defaults to ''. C code to include verbatim. Any #includes or
utility functions can go here
'''
with open( _module_header_filename, 'r') as f:
self.module_header = f.read() + "\n" + header + "\n"
with open( _module_footer_filename, 'r') as f:
self.module_footer = _substitute(f.read(),
MODULE_NAME = name,
MODULE_DOCSTRING = _quote(docstring, convert_newlines=True))
self.functions = []
self.module_name = name
def function(self,
name,
docstring,
args_input,
prototype_input,
prototype_output,
Ccode_slice_eval,
Ccode_validate = None,
Ccode_cookie_struct = '',
Ccode_cookie_cleanup = '',
extra_args = ()):
r'''Add a wrapper function to the module we're creating
SYNOPSIS
We can wrap a C function inner() like this:
m.function( "inner",
"Inner product pywrapped with npsp",
args_input = ('a', 'b'),
prototype_input = (('n',), ('n',)),
prototype_output = (),
Ccode_slice_eval = \
{np.float64:
r"""
double* out = (double*)data_slice__output;
const int N = dims_slice__a[0];
*out = 0.0;
for(int i=0; i<N; i++)
*out += *(const double*)(data_slice__a +
i*strides_slice__a[0]) *
*(const double*)(data_slice__b +
i*strides_slice__b[0]);
return true;""" })
DESCRIPTION
'function()' is the main workhorse of numpysane_pywrap python wrapping.
For each C function we want to wrap, 'function()' should be called to
generate the wrapper code. In the call to 'function()' the user
specifies how the wrapper should compute a single broadcasted slice, and
numpysane_pywrap generates the code to do everything else. See the
numpysane_pywrap module docstring for lots of detail.
ARGUMENTS
A summary description of the arguments follows. See the numpysane_pywrap
module docstring for detail.
- name
The name of the function we're wrapping. A python function of this
name will be generated in this module
- docstring
The docstring for this function
- args_input
The names of the arguments. This is an tuple of strings. Must have
the same number of elements as prototype_input
- prototype_input
An tuple of tuples that defines the shapes of the inputs. Must have
the same number of elements as args_input. Each element of the outer
tuple describes the shape of the corresponding input. Each shape is
given as an tuple describing the length of each dimension. Each length
is either
- a positive integer if we know the expected dimension size
beforehand, and only those sizes are accepted
- a string that names the dimension. Any size could be accepted for a
named dimension, but for any given named dimension, the sizes must
match across all inputs and outputs
- prototype_output
Similar to prototype_input: describes the dimensions of each output.
In the special case that we have only one output, this can be given as
a shape tuple instead of a tuple of shape tuples.
- extra_args
Defines extra arguments to accept in the validation and slice
computation functions. These extra arguments are not broadcast or
interpreted in any way; they're simply passed down from the python
caller to these functions. Please see the numpysane_pywrap module
docstring for more detail.
- Ccode_cookie_struct
A string of C code inserted into the generated sources verbatim. This
defines contents of a structure that can be precomputed once before
any broadcasted slice is evaluated. The slice computation can then use
the results in this structure. The cookie is evaluated in the
validation function (once per call), used by the slice-computation
function (many times), and cleaned up at the end of the call. This
argument is optional. If omitted, the cookie structure will be empty,
and unused. Please see the numpysane_pywrap module docstring for more
detail.
- Ccode_cookie_cleanup
If we're precomputing a cookie defined in the Ccode_cookie_struct, any
necessary cleanup can be handled by code specified in this argument.
Example: if we allocated some memory and opened files when
constructing the cookie, the memory should be freed and the files
should be closed by placing that code into this argument. Please see
the numpysane_pywrap module docstring for more detail.
- Ccode_validate
A string of C code inserted into the generated sources verbatim. This
is used to validate the input/output arguments prior to actually
performing the computation. This runs after we made the broadcasting
shape checks and type checks. If those checks are all we need, this
argument may be omitted, and no more checks are made. The most common
use case is rejecting inputs that are not stored contiguously in
memory. Please see the numpysane_pywrap module docstring for more
detail.
- Ccode_slice_eval
This argument contains the snippet of C code used to execute the
operation being wrapped. This argument is a dict mapping a type
specification to code snippets: different data types require different
C code to work with them. The type specification is either
- a numpy type (np.float64, np.int32, etc). We'll use the given code
if ALL the inputs and ALL the outputs are of this type
- a tuple of numpy types. These correspond to the inputs and outputs,
in order. This allows us to use different data types for the various
inputs and outputs
The corresponding code snippet is a string of C code that's inserted
into the generated sources verbatim. Please see the numpysane_pywrap
module docstring for more detail.
'''
if type(args_input) not in (list, tuple) or not all( type(arg) is str for arg in args_input):
raise NumpysaneError("args_input MUST be a list or tuple of strings")
Ninputs = len(args_input)
if len(prototype_input) != Ninputs:
raise NumpysaneError("Input prototype says we have {} arguments, but names for {} were given. These must match". \
format(len(prototype_input), Ninputs))
# I enumerate each named dimension, starting from -1, and counting DOWN
named_dims = {}
if not isinstance(prototype_input, tuple):
raise NumpysaneError("Input prototype must be given as a tuple")
for i_arg in range(len(prototype_input)):
dims_input = prototype_input[i_arg]
if not isinstance(dims_input, tuple):
raise NumpysaneError("Input prototype dims must be given as a tuple")
for i_dim in range(len(dims_input)):
dim = dims_input[i_dim]
if isinstance(dim,int):
if dim < 0:
raise NumpysaneError("Dimension {} in argument '{}' must be a string (named dimension) or an integer>=0. Got '{}'". \
format(i_dim, args_input[i_arg], dim))
elif isinstance(dim, str):
if dim not in named_dims:
named_dims[dim] = -1-len(named_dims)
else:
raise NumpysaneError("Dimension {} in argument '{}' must be a string (named dimension) or an integer>=0. Got '{}' (type '{}')". \
format(i_dim, args_input[i_arg], dim, type(dim)))
# The output is allowed to have named dimensions, but ONLY those that
# appear in the input. The output may be a single tuple (describing the
# one output) or it can be a tuple of tuples (describing multiple
# outputs)
if not isinstance(prototype_output, tuple):
raise NumpysaneError("Output prototype dims must be given as a tuple")
# If a single prototype_output is given, wrap it in a tuple to indicate
# that we only have one output
# If None, the single output is returned. If an integer, then a tuple is
# returned. If Noutputs==1 then we return a TUPLE of length 1
Noutputs = None
if all( type(o) is int or type(o) is str for o in prototype_output ):
prototype_outputs = (prototype_output, )
else:
prototype_outputs = prototype_output
if not all( isinstance(p,tuple) for p in prototype_outputs ):
raise NumpysaneError("Output dimensions must be integers > 0 or strings. Each output must be a tuple. Some given output aren't tuples: {}". \
format(prototype_outputs))