-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmrcal-stereo
executable file
·1340 lines (1114 loc) · 54.4 KB
/
mrcal-stereo
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Stereo processing
SYNOPSIS
$ mrcal-stereo \
--az-fov-deg 90 \
--el-fov-deg 70 \
--pixels-per-deg -0.5 \
--disparity-range 0 100 \
--sgbm-block-size 5 \
--sgbm-p1 600 \
--sgbm-p2 2400 \
--sgbm-uniqueness-ratio 5 \
--sgbm-disp12-max-diff 1 \
--sgbm-speckle-window-size 200 \
--sgbm-speckle-range 2 \
--outdir /tmp \
left.cameramodel right.cameramodel \
left.jpg right.jpg
Processing left.jpg and right.jpg
Wrote '/tmp/rectified0.cameramodel'
Wrote '/tmp/rectified1.cameramodel'
Wrote '/tmp/left-rectified.png'
Wrote '/tmp/right-rectified.png'
Wrote '/tmp/left-disparity.png'
Wrote '/tmp/left-range.png'
Wrote '/tmp/points-cam0.vnl'
### To "manually" stereo-rectify a pair of images
$ mrcal-stereo \
--az-fov-deg 80 \
--el-fov-deg 50 \
--outdir /tmp \
left.cameramodel \
right.cameramodel
Wrote '/tmp/rectified0.cameramodel'
Wrote '/tmp/rectified1.cameramodel'
$ mrcal-reproject-image \
--outdir /tmp \
/tmp/left.cameramodel \
/tmp/rectified0.cameramodel \
left.jpg
Wrote /tmp/left-reprojected.jpg
$ mrcal-reproject-image \
--outdir /tmp \
/tmp/right.cameramodel \
/tmp/rectified1.cameramodel \
right.jpg
Wrote /tmp/right-reprojected.jpg
$ mrcal-stereo \
--already-rectified \
--outdir /tmp \
/tmp/rectified[01].cameramodel \
/tmp/left-reprojected.jpg \
/tmp/right-reprojected.jpg
# This is the same as using mrcal-stereo to do all the work:
$ mrcal-stereo \
--az-fov-deg 80 \
--el-fov-deg 50 \
--outdir /tmp \
left.cameramodel \
right.cameramodel \
left.jpg \
right.jpg
Given a pair of calibrated cameras and pairs of images captured by these
cameras, this tool runs the whole stereo processing sequence to produce
disparity and range images and a point cloud array.
mrcal functions are used to construct the rectified system. Currently only the
OpenCV SGBM routine is available to perform stereo matching, but more options
will be made available with time.
The commandline arguments to configure the SGBM matcher (--sgbm-...) map to the
corresponding OpenCV APIs. Omitting an --sgbm-... argument will result in the
defaults being used in the cv2.StereoSGBM_create() call. Usually the
cv2.StereoSGBM_create() defaults are terrible, and produce a disparity map that
isn't great. The --sgbm-... arguments in the synopsis above are a good start to
get usable stereo.
The rectified system is constructed with the axes
- x: from the origin of the first camera to the origin of the second camera (the
baseline direction)
- y: completes the system from x,z
- z: the mean "forward" direction of the two input cameras, with the component
parallel to the baseline subtracted off
The active window in this system is specified using a few parameters. These
refer to
- the "azimuth" (or "az"): the direction along the baseline: rectified x axis
- the "elevation" (or "el"): the direction across the baseline: rectified y axis
The rectified field of view is given by the arguments --az-fov-deg and
--el-fov-deg. At this time there's no auto-detection logic, and these must be
given. Changing these is a "zoom" operation.
To pan the stereo system, pass --az0-deg and/or --el0-deg. These specify the
center of the rectified images, and are optional.
Finally, the resolution of the rectified images is given with --pixels-per-deg.
This is optional, and defaults to the resolution of the first input image. If we
want to scale the input resolution, pass a value <0. For instance, to generate
rectified images at half the first-input-image resolution, pass
--pixels-per-deg=-0.5. Note that the Python argparse has a problem with negative
numbers, so "--pixels-per-deg -0.5" does not work.
The input images are specified by a pair of globs, so we can process many images
with a single call. Each glob is expanded, and the filenames are sorted. The
resulting lists of files are assumed to match up.
There are several modes of operation:
- No images given: we compute the rectified system only, writing the models to
disk
- No --viz argument given: we compute the rectified system and the disparity,
and we write all output as images on disk
- --viz geometry: we compute the rectified system, and display its geometry as a
plot. No rectification is computed, and the images aren't used, and don't need
to be passed in
- --viz stereo: compute the rectified system and the disparity. We don't write
anything to disk initially, but we invoke an interactive visualization tool to
display the results. Requires pyFLTK (homepage: https://pyfltk.sourceforge.io)
and GL_image_display (homepage: https://github.com/dkogan/GL_image_display)
It is often desired to compute dense stereo for lots of images in bulk. To make
this go faster, this tool supports the -j JOBS option. This works just like in
Make: the work will be parallelized among JOBS simultaneous processes. Unlike
make, the JOBS value must be specified.
'''
import sys
import argparse
import re
import os
def parse_args():
def positive_float(string):
try:
value = float(string)
except:
print(f"argument MUST be a positive floating-point number. Got '{string}'",
file=sys.stderr)
sys.exit(1)
if value <= 0:
print(f"argument MUST be a positive floating-point number. Got '{string}'",
file=sys.stderr)
sys.exit(1)
return value
def positive_int(string):
try:
value = int(string)
except:
print(f"argument MUST be a positive integer. Got '{string}'",
file=sys.stderr)
sys.exit(1)
if value <= 0 or abs(value-float(string)) > 1e-6:
print(f"argument MUST be a positive integer. Got '{string}'",
file=sys.stderr)
sys.exit(1)
return value
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
######## geometry and rectification system parameters
parser.add_argument('--az-fov-deg',
type=float,
help='''The field of view in the azimuth direction, in
degrees. There's no auto-detection at this time, so this
argument is required (unless --already-rectified)''')
parser.add_argument('--el-fov-deg',
type=float,
help='''The field of view in the elevation direction, in
degrees. There's no auto-detection at this time, so this
argument is required (unless --already-rectified)''')
parser.add_argument('--az0-deg',
default = None,
type=float,
help='''The azimuth center of the rectified images. "0"
means "the horizontal center of the rectified system is
the mean forward direction of the two cameras projected
to lie perpendicular to the baseline". If omitted, we
align the center of the rectified system with the center
of the two cameras' views''')
parser.add_argument('--el0-deg',
default = 0,
type=float,
help='''The elevation center of the rectified system.
"0" means "the vertical center of the rectified system
lies along the mean forward direction of the two
cameras" Defaults to 0.''')
parser.add_argument('--pixels-per-deg',
help='''The resolution of the rectified images. This is
either a whitespace-less, comma-separated list of two
values (az,el) or a single value to be applied to both
axes. If a resolution of >0 is requested, the value is
used as is. If a resolution of <0 is requested, we use
this as a scale factor on the resolution of the first
input image. For instance, to downsample by a factor of
2, pass -0.5. By default, we use -1 for both axes: the
resolution of the input image at the center of the
rectified system.''')
parser.add_argument('--rectification',
choices=('LENSMODEL_PINHOLE', 'LENSMODEL_LATLON'),
default = 'LENSMODEL_LATLON',
help='''The lens model to use for rectification.
Currently two models are supported: LENSMODEL_LATLON
(the default) and LENSMODEL_PINHOLE. Pinhole stereo
works badly for wide lenses and suffers from varying
angular resolution across the image. LENSMODEL_LATLON
rectification uses a transverse equirectangular
projection, and does not suffer from these effects. It
is thus the recommended model''')
parser.add_argument('--already-rectified',
action='store_true',
help='''If given, assume the given models and images
already represent a rectified system. This will be
checked, and the models will be used as-is if the checks
pass''')
######## image pre-filtering
parser.add_argument('--clahe',
action='store_true',
help='''If given, apply CLAHE equalization to the images
prior to the stereo matching. If --already-rectified, we
still apply this equalization, if requested. Requires
--force-grayscale''')
parser.add_argument('--force-grayscale',
action='store_true',
help='''If given, convert the images to grayscale prior
to doing anything else with them. By default, read the
images in their default format, and pass those
posibly-color images to all the processing steps.
Required if --clahe''')
######## --viz
parser.add_argument('--viz',
choices=('geometry', 'stereo'),
default='',
help='''If given, we visualize either the rectified
geometry or the stereo results. If --viz geometry: we
construct the rectified stereo system, but instead of
continuing with the stereo processing, we render the
geometry of the stereo world; the images are ignored in
this mode. If --viz stereo: we launch an interactive
graphical tool to examine the rectification and stereo
matching results; the Fl_Gl_Image_Widget Python library
must be available''')
parser.add_argument('--axis-scale',
type=float,
help='''Used if --viz geometry. Scale for the camera
axes. By default a reasonable default is chosen (see
mrcal.show_geometry() for the logic)''')
parser.add_argument('--title',
type=str,
default = None,
help='''Used if --viz geometry. Title string for the plot''')
parser.add_argument('--hardcopy',
type=str,
help='''Used if --viz geometry. Write the output to
disk, instead of making an interactive plot. The output
filename is given in the option''')
parser.add_argument('--terminal',
type=str,
help=r'''Used if --viz geometry. The gnuplotlib
terminal. The default is almost always right, so most
people don't need this option''')
parser.add_argument('--set',
type=str,
action='append',
help='''Used if --viz geometry. Extra 'set' directives
to pass to gnuplotlib. May be given multiple times''')
parser.add_argument('--unset',
type=str,
action='append',
help='''Used if --viz geometry. Extra 'unset'
directives to pass to gnuplotlib. May be given multiple
times''')
parser.add_argument('--single-buffered',
action='store_true',
help='''By default the image display is double-buffered
to avoid flickering. Some graphics hardare (in
particular my i915-based laptop) doesn't work right in
this mode, so --single-buffered is available to disable
double-buffering as a work around''')
######## stereo processing
parser.add_argument('--force', '-f',
action='store_true',
default=False,
help='''By default existing files are not overwritten. Pass --force to overwrite them
without complaint''')
parser.add_argument('--outdir',
default='.',
type=lambda d: d if os.path.isdir(d) else \
parser.error(f"--outdir requires an existing directory as the arg, but got '{d}'"),
help='''Directory to write the output into. If omitted,
we user the current directory''')
parser.add_argument('--tag',
help='''String to use in the output filenames.
Non-specific output filenames if omitted ''')
parser.add_argument('--disparity-range',
type=int,
nargs=2,
default=(0,100),
help='''The disparity limits to use in the search, in
pixels. Two integers are expected: MIN_DISPARITY
MAX_DISPARITY. Completely arbitrarily, we default to
MIN_DISPARITY=0 and MAX_DISPARITY=100''')
parser.add_argument('--valid-intrinsics-region',
action='store_true',
help='''If given, annotate the image with its
valid-intrinsics region. This will end up in the
rectified images, and make it clear where successful
matching shouldn't be expected''')
parser.add_argument('--range-image-limits',
type=positive_float,
nargs=2,
default=(1,1000),
help='''The nearest,furthest range to encode in the range image.
Defaults to 1,1000, arbitrarily''')
parser.add_argument('--stereo-matcher',
choices=( 'SGBM', 'ELAS' ),
default = 'SGBM',
help='''The stereo-matching method. By default we use
the "SGBM" method from OpenCV. libelas isn't always
available, and must be enabled at compile-time by
setting USE_LIBELAS=1 during the build''')
parser.add_argument('--sgbm-block-size',
type=int,
default = 5,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, 5 is used''')
parser.add_argument('--sgbm-p1',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-p2',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-disp12-max-diff',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-pre-filter-cap',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-uniqueness-ratio',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-speckle-window-size',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-speckle-range',
type=int,
help='''A parameter for the OpenCV SGBM matcher. If
omitted, the OpenCV default is used''')
parser.add_argument('--sgbm-mode',
choices=('SGBM','HH','HH4','SGBM_3WAY'),
help='''A parameter for the OpenCV SGBM matcher. Must be
one of ('SGBM','HH','HH4','SGBM_3WAY'). If omitted, the
OpenCV default (SGBM) is used''')
parser.add_argument('--write-point-cloud',
action='store_true',
help='''If given, we write out the point cloud as a .ply
file. Each point is reported in the reference coordinate
system, colored with the nearest-neighbor color of the
camera0 image. This is disabled by default because this
is potentially a very large file''')
parser.add_argument('--jobs', '-j',
type=int,
required=False,
default=1,
help='''parallelize the processing JOBS-ways. This is
like Make, except you're required to explicitly specify
a job count. This applies when processing multiple sets
of images with the same set of models''')
parser.add_argument('models',
type=str,
nargs = 2,
help='''Camera models representing cameras used to
capture the images. Both intrinsics and extrinsics are
used''')
parser.add_argument('images',
type=str,
nargs='*',
help='''The image globs to use for the stereo. If
omitted, we only write out the rectified models. If
given, exactly two image globs must be given''')
args = parser.parse_args()
if not (len(args.images) == 0 or \
len(args.images) == 2):
print("Argument-parsing error: exactly 0 or exactly 2 images should have been given",
file=sys.stderr)
sys.exit(1)
if args.pixels_per_deg is None:
args.pixels_per_deg = (-1, -1)
else:
try:
l = [float(x) for x in args.pixels_per_deg.split(',')]
if len(l) < 1 or len(l) > 2:
raise
for x in l:
if x == 0:
raise
args.pixels_per_deg = l
except:
print("""Argument-parsing error:
--pixels_per_deg requires "RESX,RESY" or "RESXY", where RES... is a value <0 or >0""",
file=sys.stderr)
sys.exit(1)
if not args.already_rectified and \
(args.az_fov_deg is None or \
args.el_fov_deg is None ):
print("""Argument-parsing error:
--az-fov-deg and --el-fov-deg are required if not --already-rectified""",
file=sys.stderr)
sys.exit(1)
if args.clahe and not args.force_grayscale:
print("--clahe requires --force-grayscale",
file=sys.stderr)
sys.exit(1)
return args
args = parse_args()
# arg-parsing is done before the imports so that --help works without building
# stuff, so that I can generate the manpages and README
import numpy as np
import numpysane as nps
import glob
import mrcal
if args.stereo_matcher == 'ELAS':
if not hasattr(mrcal, 'stereo_matching_libelas'):
print("ERROR: the ELAS stereo matcher isn't available. libelas must be installed, and enabled at compile-time with USE_LIBELAS=1. Pass '--stereo-matcher SGBM' instead", file=sys.stderr)
sys.exit(1)
if args.viz == 'stereo':
try:
from fltk import *
except:
print("The visualizer needs the pyFLTK tool. See https://pyfltk.sourceforge.io",
file=sys.stderr)
sys.exit(1)
try:
from Fl_Gl_Image_Widget import *
except:
print("The visualizer needs the GL_image_display library. See https://github.com/dkogan/GL_image_display",
file=sys.stderr)
sys.exit(1)
if len(args.pixels_per_deg) == 2:
pixels_per_deg_az,pixels_per_deg_el = args.pixels_per_deg
else:
pixels_per_deg_az = pixels_per_deg_el = args.pixels_per_deg[0]
if args.tag is not None:
args.tag = re.sub('[^a-zA-Z0-9_+-]+', '_', args.tag)
def openmodel(f):
try:
return mrcal.cameramodel(f)
except Exception as e:
print(f"Couldn't load camera model '{f}': {e}",
file=sys.stderr)
sys.exit(1)
models = [openmodel(modelfilename) for modelfilename in args.models]
if not args.already_rectified:
models_rectified = \
mrcal.rectified_system(models,
az_fov_deg = args.az_fov_deg,
el_fov_deg = args.el_fov_deg,
az0_deg = args.az0_deg,
el0_deg = args.el0_deg,
pixels_per_deg_az = pixels_per_deg_az,
pixels_per_deg_el = pixels_per_deg_el,
rectification_model = args.rectification)
else:
models_rectified = models
mrcal.stereo._validate_models_rectified(models_rectified)
Rt_cam0_rect0 = \
mrcal.compose_Rt( models [0].extrinsics_Rt_fromref(),
models_rectified[0].extrinsics_Rt_toref() )
Rt_cam1_rect1 = \
mrcal.compose_Rt( models [1].extrinsics_Rt_fromref(),
models_rectified[1].extrinsics_Rt_toref() )
if args.viz == 'geometry':
# Display the geometry of the two cameras in the stereo pair, and of the
# rectified system
plot_options = dict(terminal = args.terminal,
hardcopy = args.hardcopy,
_set = args.set,
unset = args.unset,
wait = args.hardcopy is None)
if args.title is not None:
plot_options['title'] = args.title
data_tuples, plot_options = \
mrcal.show_geometry( list(models) + list(models_rectified),
cameranames = ( "camera0", "camera1", "camera0-rectified", "camera1-rectified" ),
show_calobjects = False,
return_plot_args = True,
axis_scale = args.axis_scale,
**plot_options)
Nside = 8
model = models_rectified[0]
w,h = model.imagersize()
linspace_w = np.linspace(0,w-1, Nside+1)
linspace_h = np.linspace(0,h-1, Nside+1)
# shape (Nloop, 2)
qloop = \
nps.transpose( nps.glue( nps.cat( linspace_w,
0*linspace_w),
nps.cat( 0*linspace_h[1:] + w-1,
linspace_h[1:]),
nps.cat( linspace_w[-2::-1],
0*linspace_w[-2::-1] + h-1),
nps.cat( 0*linspace_h[-2::-1],
linspace_h[-2::-1]),
axis=-1) )
# shape (Nloop,3): unit vectors in cam-local coords
v = mrcal.unproject(np.ascontiguousarray(qloop),
*model.intrinsics(),
normalize = True)
# Scale the vectors to a nice-looking length. This is intended to work with
# the defaults to mrcal.show_geometry(). That function sets the right,down
# axis lengths to baseline/3. Here I default to a bit less: baseline/4
baseline = \
nps.mag(mrcal.compose_Rt( models_rectified[1].extrinsics_Rt_fromref(),
models_rectified[0].extrinsics_Rt_toref())[3,:])
v *= baseline/4
# shape (Nloop,3): ref-coord system points
p = mrcal.transform_point_Rt(model.extrinsics_Rt_toref(), v)
# shape (Nloop,2,3). Nloop-length different lines with 2 points in each one
p = nps.xchg(nps.cat(p,p), -2,-3)
p[:,1,:] = model.extrinsics_Rt_toref()[3,:]
data_tuples.append( (p, dict(tuplesize = -3,
_with = 'lines lt 1',)))
import gnuplotlib as gp
gp.plot(*data_tuples, **plot_options)
sys.exit()
def write_output_one(tag, outdir, force,
func, filename):
if tag is None:
tag = ''
else:
tag = '-' + tag
f,e = os.path.splitext(filename)
filename = f"{outdir}/{f}{tag}{e}"
if os.path.exists(filename) and not force:
print(f"WARNING: '{filename}' already exists. Not overwriting this file. Pass -f to overwrite")
return
func(filename)
print(f"Wrote '{filename}'")
def write_output_all(args,
models,
images,
image_filenames,
models_rectified,
images_rectified,
disparity,
disparity_scale,
disparity_colored,
ranges,
ranges_colored,
force_override = False):
image_filenames_base = \
[os.path.splitext(os.path.split(f)[1])[0] for f in image_filenames]
if not args.already_rectified:
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: models_rectified[0].write(filename),
'rectified0.cameramodel')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: models_rectified[1].write(filename),
'rectified1.cameramodel')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: mrcal.save_image(filename, images_rectified[0]),
image_filenames_base[0] + '-rectified.png')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: mrcal.save_image(filename, images_rectified[1]),
image_filenames_base[1] + '-rectified.png')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: \
mrcal.save_image(filename, disparity_colored),
image_filenames_base[0] + '-disparity.png')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: \
mrcal.save_image(filename, disparity.astype(np.uint16)),
image_filenames_base[0] + f'-disparity-uint16-scale{disparity_scale}.png')
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: \
mrcal.save_image(filename, ranges_colored),
image_filenames_base[0] + '-range.png')
if not args.write_point_cloud:
return
# generate and output the point cloud, in the cam0 coord system
p_rect0 = \
mrcal.stereo_unproject(disparity = None,
models_rectified = models_rectified,
ranges = ranges)
Rt_ref_rect0 = models_rectified[0].extrinsics_Rt_toref()
Rt_cam0_ref = models [0].extrinsics_Rt_fromref()
# Point cloud in ref coordinates
# shape (H,W,3)
p_ref = mrcal.transform_point_Rt(Rt_ref_rect0, p_rect0)
# shape (N,3)
p_ref = nps.clump(p_ref, n=2)
# I set each point color to the nearest-pixel color in the original
# image. I only report those points that are in-bounds (they SHOULD
# be, but I make sure)
q_cam0 = mrcal.project(mrcal.transform_point_Rt(Rt_cam0_ref, p_ref),
*models[0].intrinsics())
# Without this sometimes q_cam0 can get nan, and this throws ugly warnings
i = np.isfinite(q_cam0)
i = np.min(i, axis=-1) # qx or qx being nan means the whole q is nan
p_ref = p_ref [i,:]
q_cam0 = q_cam0[i,:]
H,W = images[0].shape[:2]
q_cam0_integer = (q_cam0 + 0.5).astype(int)
i = \
(q_cam0_integer[:,0] >= 0) * \
(q_cam0_integer[:,1] >= 0) * \
(q_cam0_integer[:,0] < W) * \
(q_cam0_integer[:,1] < H)
p_ref = p_ref[i]
q_cam0_integer = q_cam0_integer[i]
image0 = images[0]
if len(image0.shape) == 2 and args.force_grayscale:
# I have a grayscale image, but the user asked for it for the
# purposes of stereo. I reload without asking for grayscale. If
# the image was a color one, that would be useful here.
image0 = mrcal.load_image(image_filenames[0])
# shape (N,) if grayscale or
# (N,3) if bgr color
color = image0[q_cam0_integer[:,1], q_cam0_integer[:,0]]
write_output_one(args.tag,
args.outdir,
args.force or force_override,
lambda filename: \
mrcal.write_point_cloud_as_ply(filename,
p_ref,
color = color,
binary = True),
image_filenames_base[0] + '-points.ply')
if len(args.images) == 0:
# No images are given. Just write out the rectified models
write_output_one(args.tag,
args.outdir,
args.force,
lambda filename: models_rectified[0].write(filename),
'rectified0.cameramodel')
write_output_one(args.tag,
args.outdir,
args.force,
lambda filename: models_rectified[1].write(filename),
'rectified1.cameramodel')
sys.exit(0)
if not args.already_rectified:
rectification_maps = mrcal.rectification_maps(models, models_rectified)
image_filenames_all = [sorted(glob.glob(os.path.expanduser(g))) for g in args.images]
if len(image_filenames_all[0]) != len(image_filenames_all[1]):
print(f"First glob matches {len(image_filenames_all[0])} files, but the second glob matches {len(image_filenames_all[1])} files. These must be identical",
file=sys.stderr)
sys.exit(1)
Nimages = len(image_filenames_all[0])
if Nimages == 0:
print("The given globs matched 0 images. Nothing to do",
file=sys.stderr)
sys.exit(1)
if args.viz == 'stereo' and Nimages > 1:
print(f"The given globs matched {Nimages} images. But '--viz stereo' was given, so exactly ONE set of images is expected",
file=sys.stderr)
sys.exit(1)
if args.clahe or args.stereo_matcher == 'SGBM':
import cv2
if args.clahe:
clahe = cv2.createCLAHE()
clahe.setClipLimit(8)
kwargs_load_image = dict()
if args.force_grayscale:
kwargs_load_image['bits_per_pixel'] = 8
kwargs_load_image['channels'] = 1
# Done with all the preliminaries. Run the stereo matching
disparity_min,disparity_max = args.disparity_range
if args.stereo_matcher == 'SGBM':
# This is a hard-coded property of the OpenCV StereoSGBM implementation
disparity_scale = 16
# round to nearest multiple of disparity_scale. The OpenCV StereoSGBM
# implementation requires this
num_disparities = disparity_max - disparity_min
num_disparities = disparity_scale*round(num_disparities/disparity_scale)
# I only add non-default args. StereoSGBM_create() doesn't like being given
# None args
kwargs_sgbm = dict()
if args.sgbm_p1 is not None:
kwargs_sgbm['P1'] = args.sgbm_p1
if args.sgbm_p2 is not None:
kwargs_sgbm['P2'] = args.sgbm_p2
if args.sgbm_disp12_max_diff is not None:
kwargs_sgbm['disp12MaxDiff'] = args.sgbm_disp12_max_diff
if args.sgbm_uniqueness_ratio is not None:
kwargs_sgbm['uniquenessRatio'] = args.sgbm_uniqueness_ratio
if args.sgbm_speckle_window_size is not None:
kwargs_sgbm['speckleWindowSize'] = args.sgbm_speckle_window_size
if args.sgbm_speckle_range is not None:
kwargs_sgbm['speckleRange'] = args.sgbm_speckle_range
if args.sgbm_mode is not None:
if args.sgbm_mode == 'SGBM':
kwargs_sgbm['mode'] = cv2.StereoSGBM_MODE_SGBM
elif args.sgbm_mode == 'HH':
kwargs_sgbm['mode'] = cv2.StereoSGBM_MODE_HH
elif args.sgbm_mode == 'HH4':
kwargs_sgbm['mode'] = cv2.StereoSGBM_MODE_HH4
elif args.sgbm_mode == 'SGBM_3WAY':
kwargs_sgbm['mode'] = cv2.StereoSGBM_MODE_SGBM_3WAY
else:
raise Exception("arg-parsing error. This is a bug. Please report")
# blocksize is required, so I always pass it. There's a default set in
# the argument parser, so this is never None
kwargs_sgbm['blockSize'] = args.sgbm_block_size
stereo_sgbm = \
cv2.StereoSGBM_create(minDisparity = disparity_min,
numDisparities = num_disparities,
**kwargs_sgbm)
elif args.stereo_matcher == 'ELAS':
disparity_scale = 1
else:
raise Exception("Getting here is a bug")
def process(i_image):
image_filenames=(image_filenames_all[0][i_image],
image_filenames_all[1][i_image])
print(f"Processing {os.path.split(image_filenames[0])[1]} and {os.path.split(image_filenames[1])[1]}")
images = [mrcal.load_image(f, **kwargs_load_image) for f in image_filenames]
# This doesn't really matter: I don't use the input imagersize. But a
# mismatch suggests the user probably messed up, and it would save them time
# to yell at them
imagersize_image = np.array((images[0].shape[1], images[0].shape[0]))
imagersize_model = models[0].imagersize()
if np.any(imagersize_image - imagersize_model):
print(f"Image '{image_filenames[0]}' dimensions {imagersize_image} don't match the model '{args.models[0]}' dimensions {imagersize_model}",
file=sys.stderr)
return False
imagersize_image = np.array((images[1].shape[1], images[1].shape[0]))
imagersize_model = models[1].imagersize()
if np.any(imagersize_image - imagersize_model):
print(f"Image '{image_filenames[1]}' dimensions {imagersize_image} don't match the model '{args.models[1]}' dimensions {imagersize_model}",
file=sys.stderr)
return False
if args.clahe:
images = [ clahe.apply(image) for image in images ]
if len(images[0].shape) == 3:
if args.stereo_matcher == 'ELAS':
print("The ELAS matcher requires grayscale images. Pass --force-grayscale",
file=sys.stderr)
return False
if args.valid_intrinsics_region:
for i in range(2):
mrcal.annotate_image__valid_intrinsics_region(images[i], models[i])
if not args.already_rectified:
images_rectified = [mrcal.transform_image(images[i],
rectification_maps[i]) \
for i in range(2)]
else:
images_rectified = images
if args.stereo_matcher == 'SGBM':
# opencv barfs if I give it a color image and a monochrome image, so I
# convert
if len(images_rectified[0].shape) == 2 and \
len(images_rectified[1].shape) == 3:
disparity = stereo_sgbm.compute(images_rectified[0],
cv2.cvtColor(images_rectified[1], cv2.COLOR_BGR2GRAY))
elif len(images_rectified[0].shape) == 3 and \
len(images_rectified[1].shape) == 2:
disparity = stereo_sgbm.compute(cv2.cvtColor(images_rectified[0], cv2.COLOR_BGR2GRAY),
images_rectified[1])
else:
disparity = stereo_sgbm.compute(*images_rectified)
elif args.stereo_matcher == 'ELAS':
disparities = mrcal.stereo_matching_libelas(*images_rectified,
disparity_min = disparity_min,
disparity_max = disparity_max)
disparity = disparities[0]
disparity_colored = mrcal.apply_color_map(disparity,
a_min = disparity_min*disparity_scale,
a_max = disparity_max*disparity_scale)
# invalid or missing ranges are returned as range=0
ranges = mrcal.stereo_range( disparity,
models_rectified,
disparity_scale = disparity_scale,
disparity_min = disparity_min)
ranges_colored = mrcal.apply_color_map(ranges,
a_min = args.range_image_limits[0],
a_max = args.range_image_limits[1],)
if args.viz == 'stereo':
# Earlier I confirmed that in this path Nimages==1
gui_stereo(images,
image_filenames,
images_rectified,
disparity,
disparity_colored,
ranges,
ranges_colored)
else:
write_output_all(args,
models,
images,
image_filenames,
models_rectified,
images_rectified,
disparity,
disparity_scale,
disparity_colored,
ranges,
ranges_colored)
return True
def gui_stereo(images,
image_filenames,
images_rectified,
disparity,
disparity_colored,
ranges,
ranges_colored):
# Done with all the processing. Invoke the visualizer!
UI_usage_message = r'''Usage:
Left mouse button click/drag: pan
Mouse wheel up/down/left/right: pan
Ctrl-mouse wheel up/down: zoom
'u': reset view: zoom out, pan to the center
'd': show a colorized disparity image (default)
'r': show a colorized range image
Right mouse button click: examine stereo at pixel
TAB: transpose windows
'''
def set_status(string,
q_rect = None,
q_input0 = None,
q_input1 = None):
# None means "use previous"
if string is not None: