-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathmrcal-show-projection-diff
executable file
·505 lines (408 loc) · 22.1 KB
/
mrcal-show-projection-diff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
#!/usr/bin/env python3
# Copyright (c) 2017-2023 California Institute of Technology ("Caltech"). U.S.
# Government sponsorship acknowledged. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
r'''Visualize the difference in projection between N models
SYNOPSIS
$ mrcal-show-projection-diff before.cameramodel after.cameramodel
... a plot pops up showing how these two models differ in their projections
The operation of this tool is documented at
https://mrcal.secretsauce.net/differencing.html
This tool visualizes the results of mrcal.projection_diff()
It is often useful to compare the projection behavior of two camera models. For
instance, one may want to validate a calibration by comparing the results of two
different chessboard dances. Or one may want to evaluate the stability of the
intrinsics in response to mechanical or thermal stresses. This tool makes these
comparisons, and produces a visualization of the results.
In the most common case we're given exactly 2 models to compare. We then display
the projection difference as either a vector field or a heat map. If we're given
more than 2 models, then a vector field isn't possible and we instead display as
a heatmap the standard deviation of the differences between models 1..N and
model0.
The top-level operation of this tool:
- Grid the imager
- Unproject each point in the grid using one camera model
- Apply a transformation to map this point from one camera's coord system to the
other. How we obtain this transformation is described below
- Project the transformed points to the other camera
- Look at the resulting pixel difference in the reprojection
Several arguments control how we obtain the transformation. Top-level logic:
if --intrinsics-only:
Rt10 = identity_Rt()
else:
if --radius 0:
Rt10 = relative_extrinsics(models)
else:
Rt10 = implied_Rt10__from_unprojections()
The details of how the comparison is computed, and the meaning of the arguments
controlling this, are in the docstring of mrcal.projection_diff().
'''
import sys
import argparse
import re
import os
def parse_args():
parser = \
argparse.ArgumentParser(description = __doc__,
formatter_class=argparse.RawDescriptionHelpFormatter)
parser.add_argument('--gridn',
type=int,
default = (60,40),
nargs = 2,
help='''How densely we should sample the imager. By default we use a 60x40 grid''')
parser.add_argument('--distance',
type=str,
help='''Has an effect only without --intrinsics-only.
The projection difference varies depending on the range
to the observed world points, with the queried range set
in this argument. If omitted we look out to infinity. We
can also fit multiple distances at the same time by
passing them here in a comma-separated, whitespace-less
list. If multiple distances are given, we fit the
implied-by-the-intrinsics transformation using ALL the
distances, but we display the difference for the FIRST
distance given.''')
parser.add_argument('--intrinsics-only',
action='store_true',
help='''If given, we evaluate the intrinsics of each
lens in isolation by assuming that the coordinate
systems of each camera line up exactly''')
parser.add_argument('--where',
type=float,
nargs=2,
help='''Center of the region of interest for this diff.
Used only without --intrinsics-only and without
"--radius 0". It is usually impossible for the models to
match everywhere, but focusing on a particular area can
work better. The implied transformation will be fit to
match as large as possible an area centered on this
argument. If omitted, we will focus on the center of the
imager''')
parser.add_argument('--radius',
type=float,
default=-1.,
help='''Radius of the region of interest. If ==0, we do
NOT fit an implied transformation at all, but use the
transformations in the models. If omitted or <0, we use
a "reasonable" value: the whole imager if we're using
uncertainties, or min(width,height)/6 if
--no-uncertainties. To fit with data across the whole
imager in either case, pass in a very large radius''')
parser.add_argument('--same-dance',
action='store_true',
default=False,
help=argparse.SUPPRESS)
'''--same-dance IS NOT READY FOR PUBLIC CONSUMPTION. It is purposely
undocumented. If given, I assume that the given models all came from the
same calibration dance, and I can thus compute implied_Rt10 geometrically,
instead of fitting projections. Valid only if we're given exactly two
models. Exclusive with --where and --radius (those control the fit that we
skip with --same-dance
If putting this back, this was a part of the docstring for this tool:
- If we know that our models came from different interpretations of the same
board dance (using different lens models or optimization parameters, for
instance), we can use the geometry of the cameras and frames to compute
implied_Rt10. Indicate this case by passing --same-dance
'''
parser.add_argument('--observations',
action='store_true',
default=False,
help='''If given, I show where the chessboard corners were observed at calibration
time. These should correspond to the low-diff regions.''')
parser.add_argument('--valid-intrinsics-region',
action='store_true',
default=False,
help='''If given, I overlay the valid-intrinsics regions onto the plot''')
parser.add_argument('--cbmax',
type=float,
default=4,
help='''Maximum range of the colorbar''')
parser.add_argument('--title',
type=str,
default = None,
help='''Title string for the plot. Overrides the default
title. Exclusive with --extratitle''')
parser.add_argument('--extratitle',
type=str,
default = None,
help='''Additional string for the plot to append to the
default title. Exclusive with --title''')
parser.add_argument('--vectorfield',
action = 'store_true',
default = False,
help='''Plot the diff as a vector field instead of as a heat map. The vector field
contains more information (magnitude AND direction), but
is less clear at a glance''')
parser.add_argument('--vectorscale',
type = float,
default = 1.0,
help='''If plotting a vectorfield, scale all the vectors by this factor. Useful to
improve legibility if the vectors are too small to
see''')
parser.add_argument('--directions',
action = 'store_true',
help='''If given, the plots are color-coded by the direction of the error, instead of
the magnitude''')
parser.add_argument('--no-uncertainties',
action = 'store_true',
help='''Used only without --intrinsics-only and without
"--radius 0". By default we use the uncertainties in the
model to weigh the fit. This will focus the fit on the
confident region in the models without --where or
--radius. The computation will run faster with
--no-uncertainties, but the default --where and --radius
may need to be adjusted''')
parser.add_argument('--hardcopy',
type=str,
help='''Write the output to disk, instead of making an interactive plot''')
parser.add_argument('--terminal',
type=str,
help=r'''gnuplotlib terminal. The default is good almost always, so most people don't
need this option''')
parser.add_argument('--set',
type=str,
action='append',
help='''Extra 'set' directives to gnuplotlib. Can be given multiple times''')
parser.add_argument('--unset',
type=str,
action='append',
help='''Extra 'unset' directives to gnuplotlib. Can be given multiple times''')
parser.add_argument('models',
type=str,
nargs='+',
help='''Camera models to diff''')
args = parser.parse_args()
if len(args.models) < 2:
print(f"I need at least two models to diff. Instead got '{args.models}'", file=sys.stderr)
sys.exit(1)
if args.title is not None and \
args.extratitle is not None:
print("--title and --extratitle are exclusive", file=sys.stderr)
sys.exit(1)
return args
args = parse_args()
# arg-parsing is done before the imports so that --help works without building
# stuff, so that I can generate the manpages and README
if args.vectorscale != 1.0 and not args.vectorfield:
print("Error: --vectorscale only makes sense with --vectorfield",
file = sys.stderr)
sys.exit(1)
if args.distance is None:
distance = None
else:
try:
distance = [float(d) for d in args.distance.split(',')]
except:
print("Error: distances must be given a comma-separated list of floats in --distance",
file = sys.stderr)
sys.exit(1)
if len(args.models) > 2:
if args.vectorfield:
print("Error: --vectorfield works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.directions:
print("Error: --directions works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.same_dance:
print("Error: --same-dance works only with exactly 2 models",
file = sys.stderr)
sys.exit(1)
if args.same_dance and \
(args.where is not None or args.radius >= 0):
print("Error: --same-dance is exclusive with --where and --radius",
file = sys.stderr)
sys.exit(1)
import mrcal
import numpy as np
import numpysane as nps
plotkwargs_extra = {}
if args.set is not None:
plotkwargs_extra['set'] = args.set
if args.unset is not None:
plotkwargs_extra['unset'] = args.unset
if args.title is not None:
plotkwargs_extra['title'] = args.title
if args.extratitle is not None:
plotkwargs_extra['extratitle'] = args.extratitle
def openmodel(f):
try:
return mrcal.cameramodel(f)
except Exception as e:
print(f"Couldn't load camera model '{f}': {e}",
file=sys.stderr)
sys.exit(1)
models = [openmodel(modelfilename) for modelfilename in args.models]
if args.same_dance:
# EXPERIMENTAL, UNDOCUMENTED STUFF
if 1:
# default method: fit the corner observations in the coord system of the
# camera. Each observation contributes a point to the fit
# I need to make sure to pick the same inlier set when choosing the frame
# observations. I pick the intersection of the two
i_f_ci_ce = [model.optimization_inputs()['indices_frame_camintrinsics_camextrinsics'] \
for model in models]
if i_f_ci_ce[0].shape != i_f_ci_ce[1].shape or \
not np.all(i_f_ci_ce[0] == i_f_ci_ce[1]):
print(f"--same-dance means that the two models must have an identical indices_frame_camintrinsics_camextrinsics, but they do not. Shapes {i_f_ci_ce[0].shape},{i_f_ci_ce[1].shape}",
file=sys.stderr)
sys.exit(1)
obs = [model.optimization_inputs()['observations_board'] \
for model in models]
if obs[0].shape != obs[1].shape:
print(f"--same-dance means that the two models must have an identically-laid-out observations_board, but they do not. Shapes {obs[0].shape},{obs[1].shape}",
file=sys.stderr)
sys.exit(1)
idx_inliers = [ obs[i][ ...,2] > 0 \
for i in range(len(models)) ]
calobjects = \
[ mrcal.hypothesis_board_corner_positions(model.icam_intrinsics(),
**model.optimization_inputs(),
idx_inliers = idx_inliers[0]*idx_inliers[1] )[-2] \
for model in models ]
Rt10 = mrcal.align_procrustes_points_Rt01(calobjects[1], calobjects[0])
elif 1:
# new method being tested. Fit the corners in the ref coordinate
# systems. This explicitly models the extra existing rotation, so it
# should be most correct
optimization_inputs0 = models[0].optimization_inputs()
optimization_inputs1 = models[1].optimization_inputs()
calobject_height,calobject_width = optimization_inputs0['observations_board'].shape[1:3]
calobject_spacing = optimization_inputs0['calibration_object_spacing']
# shape (Nh, Nw, 3)
calibration_object0 = \
mrcal.ref_calibration_object(calobject_width, calobject_height,
calobject_spacing,
calobject_warp = optimization_inputs0['calobject_warp'])
calibration_object1 = \
mrcal.ref_calibration_object(calobject_width, calobject_height,
calobject_spacing,
calobject_warp = optimization_inputs1['calobject_warp'])
# shape (Nframes, Nh, Nw, 3)
pcorners_ref0 = \
mrcal.transform_point_rt( nps.mv( optimization_inputs0['frames_rt_toref'], -2, -4),
calibration_object0 )
pcorners_ref1 = \
mrcal.transform_point_rt( nps.mv( optimization_inputs1['frames_rt_toref'], -2, -4),
calibration_object1 )
# shape (4,3)
Rt_ref10 = mrcal.align_procrustes_points_Rt01(# shape (N,3)
nps.clump(pcorners_ref1, n=3),
# shape (N,3)
nps.clump(pcorners_ref0, n=3))
# I have the ref-ref transform. I convert to a cam-cam transform
icam_extrinsics0 = \
mrcal.corresponding_icam_extrinsics(models[0].icam_intrinsics(),
**optimization_inputs0)
icam_extrinsics1 = \
mrcal.corresponding_icam_extrinsics(models[1].icam_intrinsics(),
**optimization_inputs1)
if icam_extrinsics0 >= 0:
Rt_cr0 = mrcal.Rt_from_rt(optimization_inputs0['extrinsics_rt_fromref'][icam_extrinsics0])
else:
Rt_cr0 = mrcal.identity_Rt()
if icam_extrinsics1 >= 0:
Rt_cr1 = mrcal.Rt_from_rt(optimization_inputs1['extrinsics_rt_fromref'][icam_extrinsics1])
else:
Rt_cr1 = mrcal.identity_Rt()
Rt10 = \
mrcal.compose_Rt(Rt_cr1,
Rt_ref10,
mrcal.invert_Rt(Rt_cr0))
else:
# default method used in the uncertainty computation. compute the mean
# of the frame points
optimization_inputs0 = models[0].optimization_inputs()
icam_intrinsics0 = models[0].icam_intrinsics()
icam_extrinsics0 = \
mrcal.corresponding_icam_extrinsics(icam_intrinsics0, **optimization_inputs0)
if icam_extrinsics0 >= 0:
Rt_rc0 = mrcal.invert_Rt(mrcal.Rt_from_rt(optimization_inputs0['extrinsics_rt_fromref'][icam_extrinsics0]))
else:
Rt_rc0 = mrcal.identity_Rt()
Rt_fr0 = mrcal.invert_Rt(mrcal.Rt_from_rt(optimization_inputs0['frames_rt_toref']))
optimization_inputs1 = models[1].optimization_inputs()
icam_intrinsics1 = models[1].icam_intrinsics()
icam_extrinsics1 = \
mrcal.corresponding_icam_extrinsics(icam_intrinsics1, **optimization_inputs1)
if icam_extrinsics1 >= 0:
Rt_cr1 = mrcal.Rt_from_rt(optimization_inputs1['extrinsics_rt_fromref'][icam_extrinsics1])
else:
Rt_cr1 = mrcal.identity_Rt()
Rt_rf1 = mrcal.Rt_from_rt(optimization_inputs1['frames_rt_toref'])
# not a geometric transformation: the R is not in SO3
Rt_r1r0 = np.mean( mrcal.compose_Rt(Rt_rf1, Rt_fr0), axis=-3)
Rt_c1c0 = mrcal.compose_Rt( Rt_cr1, Rt_r1r0, Rt_rc0)
q0 = models[0].imagersize()*2./5.
v0_cam = mrcal.unproject(q0, optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0],
normalize = True)
p0_cam = v0_cam * (1e5 if distance is None else distance)
# print(f"v0_cam = {v0_cam}")
# print(f"reprojected = {mrcal.project(v0_cam, optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0])}")
# print(f"reprojected other = {mrcal.project(np.array([-0.2471004,-0.21598248,0.9446126 ]), optimization_inputs0['lensmodel'], optimization_inputs0['intrinsics'][icam_intrinsics0])}")
# print(f"reprojected other = {mrcal.project(np.array([-0.2471004,-0.21598248,0.9446126 ]), *models[0].intrinsics())}")
# print(f"p0_cam = {p0_cam}")
p0_ref = mrcal.transform_point_Rt(Rt_rc0, p0_cam)
p0_frame = mrcal.transform_point_Rt(Rt_fr0, p0_ref)
p1_refall = mrcal.transform_point_Rt(Rt_rf1, p0_frame)
p1_ref = np.mean(p1_refall, axis=0)
# print(f"p0_ref = {p0_ref}")
# print(f"rt_rf0[0] = {optimization_inputs0['frames_rt_toref'][0]}")
# print(f"Rt_fr0[0] = {Rt_fr0[0]}")
# print(f"p0_frame = {p0_frame}")
# print(f"p1_refall = {p1_refall}")
# print(f"p1_ref = {p1_ref}")
p1_cam = mrcal.transform_point_Rt(Rt_cr1, p1_ref)
q1 = mrcal.project(p1_cam, *models[1].intrinsics())
# print(f"p1_cam = {p1_cam}")
# print(f"q1 = {q1}")
# print(f"before:\n{Rt10}")
Rt10 = Rt_r1r0
# print(f"after:\n{Rt10}")
# print(f"--same-dance Rt10: {Rt10}")
# print(f"--same-dance Ninliers = {np.count_nonzero(idx_inliers[0]*idx_inliers[1])} Ntotal = {np.size(idx_inliers[0])}")
# print(f"idx_inliers[0].shape: {idx_inliers[0].shape}")
# import gnuplotlib as gp
# gp.plot(nps.mag(calobjects[0] - calobjects[1]), wait=1)
# # gp.plot( (calobjects[0] - calobjects[1],), tuplesize=-3, _with='points', square=1, _3d=1, xlabel='x', ylabel = 'y', zlabel = 'z')
# # import IPython
# # IPython.embed()
# # sys.exit()
if args.observations:
optimization_inputs = [ m.optimization_inputs() for m in models ]
if any( oi is None for oi in optimization_inputs ):
print("mrcal-show-projection-diff --observations requires optimization_inputs to be available for all models, but this is missing for some models",
file=sys.stderr)
sys.exit(1)
plot,Rt10 = mrcal.show_projection_diff(models,
gridn_width = args.gridn[0],
gridn_height = args.gridn[1],
observations = args.observations,
valid_intrinsics_region = args.valid_intrinsics_region,
distance = distance,
intrinsics_only = args.intrinsics_only,
use_uncertainties = not args.no_uncertainties,
focus_center = args.where,
focus_radius = args.radius,
vectorfield = args.vectorfield,
vectorscale = args.vectorscale,
directions = args.directions,
hardcopy = args.hardcopy,
terminal = args.terminal,
cbmax = args.cbmax,
**plotkwargs_extra)
if not args.intrinsics_only and args.radius != 0 and \
Rt10 is not None and Rt10.shape == (4,3):
rt10 = mrcal.rt_from_Rt(Rt10)
print(f"Transformation cam1 <-- cam0: rotation: {nps.mag(rt10[:3])*180./np.pi:.03f} degrees, translation: {rt10[3:]} m")
dist_shift = nps.mag(rt10[3:])
if dist_shift > 0.01:
msg = f"## WARNING: fitted camera moved by {dist_shift:.03f}m. This is probably aphysically high, and something is wrong. Pass both a high and a low --distance? See the docs at https://mrcal.secretsauce.net/differencing.html"
print(msg, file=sys.stderr)
if args.hardcopy is None:
plot.wait()