-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathtest.py
executable file
·437 lines (352 loc) · 13.4 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
#!/usr/bin/python3
r'''A simple non-automated test script
This script makes some plots, and tests the error detection. One could run this
script, and make sure all the plots come up. This is NOT an automated test. For
a demo of the capabilities of gnuplotlib, see the guide at
https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
'''
import numpy as np
import numpysane as nps
import time
import sys
import gnuplotlib as gp
# some simple infrastructure
def print_red(x):
"""print the message in red"""
sys.stdout.write("\x1b[31m" + x + "\x1b[0m\n")
def print_green(x):
"""Print the message in green"""
sys.stdout.write("\x1b[32m" + x + "\x1b[0m\n")
def check_expected_error(what, f):
sys.stderr.write(what + '\n')
sys.stderr.write("=================================\n")
try:
f()
except gp.GnuplotlibError as e:
print_green("OK! Got err I was supposed to get:\n[[[[[[[\n{}\n]]]]]]]".format(e))
except Exception as e:
print_red("ERROR! Got some other error I was NOT supposed to get: {}".format(e))
else:
print_red("ERROR! An error was supposed to be reported but it was not")
# data I use for 2D testing
x = np.arange(21) - 10
# data I use for 3D testing
th = np.linspace(0, np.pi*2, 30)
ph = np.linspace(-np.pi/2, np.pi*2, 30)[:,np.newaxis]
x_3d = (np.cos(ph) * np.cos(th)) .ravel()
y_3d = (np.cos(ph) * np.sin(th)) .ravel()
z_3d = (np.sin(ph) * np.ones( th.shape )) .ravel()
rho = np.linspace(0, 2*np.pi, 1000) # dim=( 1000,)
a = np.arange(-4,3)[:, np.newaxis] # dim=(7,1)
#################################
# Now the demos!
#################################
# first, some very basic stuff. Testing implicit domains, multiple curves in
# arguments, packed broadcastable data, etc
gp.plot(x**2, wait=1)
gp.plot(( np.transpose(nps.cat(x,x**2)),
dict(_with='linespoints pt 4 ps 2'),
),
( 5,60,
dict(tuplesize=2,
_with='linespoints pt 5 ps 2'),
),
( np.array((3,40)),
dict(_with='linespoints pt 6 ps 2'),
),
tuplesize = -2,
wait=1)
gp.plot(-x, x**3, wait=1)
gp.plot((x**2), wait=1)
gp.plot((-x, x**3, dict(_with = 'lines')), (x**2,), wait=1)
gp.plot( x, nps.cat(x**3, x**2) , wait=1)
gp.plot( nps.cat(-x**3, x**2), _with='lines' , wait=1)
gp.plot( (nps.cat(x**3, -x**2), dict(_with = 'points') ), wait=1)
# Make sure xrange settings don't get overridden. The label below should be out
# of bounds, and not visible
gp.plot( ( np.arange(10), ),
( np.array((5,),), np.array((2,),), np.array(("Seeing this is a bug!",),),
dict(_with = 'labels',
tuplesize = 3)),
( np.array((5,),), np.array((7,),), np.array(("This SHOULD be visible. Another label should be out-of-view, below the x-axis",),),
dict(_with = 'labels',
tuplesize = 3)),
_set = 'yrange [5:10]',
unset = 'grid',
wait = True)
# # This should make no plot at all, with a warning that all the data is out of
# # bounds. I haven't written a test harness to look at stderr output yet, so I
# # disable this check
# gp.plot( np.arange(10),
# _set = 'xrange [10:20]',
# wait = True)
#################################
# some more varied plotting, using the object-oriented interface
plot1 = gp.gnuplotlib(_with = 'linespoints',
xmin = -10,
title = 'Error bars and other things',
wait = 1)
plot1.plot( ( nps.cat(x, x*2, x*3), x**2 - 300,
dict(_with = 'lines lw 4',
y2 = True,
legend = 'parabolas')),
(x**2 * 10, x**2/40, x**2/2, # implicit domain
dict(_with = 'xyerrorbars',
tuplesize = 4)),
(x, nps.cat(x**3, x**3 - 100),
dict(_with = 'lines',
legend = 'shifted cubics',
tuplesize = 2)))
#################################
# a way to control the point size
gp.plot( x**2, np.abs(x)/2, x*50,
cbrange = '-600:600',
_with = 'points pointtype 7 pointsize variable palette',
tuplesize = 4,
wait = 1)
# labels
gp.plot(np.arange(5),np.arange(5)+1,
np.array( ['{} {}'.format(x,x+1) for x in range(5)], dtype=str),
_with='labels', tuplesize=3, ascii=1,
wait = 1)
# Conchoids of de Sluze. Broadcasting example
gp.plot( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
_with = 'lines',
set = 'polar',
square = True,
yrange = [-5,5],
legend = a.ravel(),
wait = 1)
################################
# some 3d stuff
################################
# gp.plot a sphere
gp.plot3d( x_3d, y_3d, z_3d,
_with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
wait = 1)
# sphere, ellipse together
gp.plot3d( (x_3d * nps.transpose(np.array([[1,2]])),
y_3d * nps.transpose(np.array([[1,2]])),
z_3d,
dict( legend = np.array(('sphere', 'ellipse')))),
title = 'sphere, ellipse',
square = True,
_with = 'points',
wait = 1)
# similar, written to a png
gp.plot3d( (x_3d * nps.transpose(np.array([[1,2]])),
y_3d * nps.transpose(np.array([[1,2]])),
z_3d,
dict( legend = np.array(('sphere', 'ellipse')))),
title = 'sphere, ellipse',
square = True,
_with = 'points',
hardcopy = 'spheres.png',
wait = 1)
# some paraboloids plotted on an implicit 2D domain
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
gp.plot3d( ( zz, dict(legend = 'zplus')),
(-zz, dict(legend = 'zminus')),
(zz*2, dict(legend = 'zplus2')),
_with = 'points', title = 'gridded paraboloids', ascii=True,
wait = 1)
# 3d, variable color, variable pointsize
th2 = np.linspace(0, 6*np.pi, 200)
zz = np.linspace(0, 5, 200)
size = 0.5 + np.abs(np.cos(th2))
color = np.sin(2*th2)
gp.plot3d( ( np.cos(th2) * nps.transpose(np.array([[1,-1]])),
np.sin(th2) * nps.transpose(np.array([[1,-1]])),
zz, size, color, dict( legend = np.array(('spiral 1', 'spiral 2')))),
title = 'double helix',
tuplesize = 5,
_with = 'points pointsize variable pointtype 7 palette',
wait = 1)
# implicit domain heat map
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
gp.plot3d(zz,
title = 'Paraboloid heat map',
set = 'view map',
_with = 'image',
wait = 1)
# same, but as a 2d gp.plot, _with a curve drawn on top for good measure
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
xx = np.linspace(0,20,100)
gp.plot( ( zz, dict(tuplesize = 3,
_with = 'image')),
(xx, 20*np.cos(xx/20 * np.pi/2),
dict(tuplesize = 2,
_with = 'lines')),
title = 'Paraboloid heat map, 2D',
xmin = 0,
xmax = 20,
ymin = 0,
ymax = 20,
wait = 1)
################################
# 2D implicit domain demos
################################
xx,yy = np.mgrid[-10:11, -10:11]
zz = np.sqrt(xx*xx + yy*yy)
xx = xx[:, 2:12]
zz = zz[:, 2:12]
# single 3d matrix curve
gp.plot(zz,
title = 'Single 3D matrix plot. Binary.',
square = 1,
tuplesize = 3,
_with = 'points palette pt 7',
ascii = False,
wait = 1)
# 4d matrix curve
gp.plot(zz, xx,
title = '4D matrix plot. Binary.',
square = 1,
tuplesize = 4,
_with = 'points palette ps variable pt 7',
ascii = False,
wait = 1)
# Using broadcasting to plot each slice with a different style
gp.plot((nps.cat(xx,zz),
dict(tuplesize = 3,
_with = np.array(('points palette pt 7','points ps variable pt 6')))),
title = 'Two 3D matrix plots. Binary.',
square = 1,
ascii = False,
wait = 1)
# # Gnuplot doesn't support this
# gp.plot(z, x,
# title = '4D matrix plot. Binary.',
# square = 1,
# tuplesize = 4,
# _with = 'points palette ps variable pt 7',
# ascii = True,
# wait = 1)
#
# 2 3d matrix curves
gp.plot((nps.cat(xx,zz),
dict(tuplesize = 3,
_with = np.array(('points palette pt 7','points ps variable pt 6')))),
title = 'Two 3D matrix plots. Binary.',
square = 1,
ascii = True,
wait = 1)
###################################
# fancy contours just because I can
###################################
yy,xx = np.mgrid[0:61,0:61]
xx -= 30
yy -= 30
zz = np.sin(xx / 4.0) * yy
# single 3d matrix curve. Two plots: the image and the contours together.
# Broadcasting the styles
gp.plot3d( (zz, dict(tuplesize = 3,
_with = np.array(('image','lines')))),
title = 'matrix plot with contours',
_set = [ 'contours base',
'cntrparam bspline',
'cntrparam levels 15',
'view 0,0'],
unset = 'grid',
_unset = 'surface',
square = 1,
wait = 1)
################################
# multiplot
################################
# basics
gp.plot( th, nps.cat( np.cos(th), np.sin(th)),
title = 'broadcasting sin, cos',
_xrange = [0,2.*np.pi],
_yrange = [-1,1],
wait = 1)
gp.plot( (th, np.cos(th)),
(th, np.sin(th)),
title = 'separate plots for sin, cos',
_xrange = [0,2.*np.pi],
_yrange = [-1,1],
wait = 1)
gp.plot( (th, np.cos(th), dict(title="cos",
_xrange = [0,2.*np.pi],
_yrange = [-1,1],)),
(th, np.sin(th), dict(title="sin",
_xrange = [0,2.*np.pi],
_yrange = [-1,1])),
multiplot='title "multiplot sin,cos" layout 2,1',
wait = 1)
gp.plot( (x**2,),
(-x, x**3),
( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
dict( _with = 'lines',
set = 'polar',
square = True,
yrange = [-5,5],
legend = a.ravel())),
(x_3d, y_3d, z_3d,
dict( _with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
_3d = True)),
wait=1,
multiplot='title "basic multiplot" layout 2,2', )
# fancy contours stacked on top of one another. Using multiplot to render
# several plots directly onto one another
xx,yy = np.meshgrid(np.linspace(-5,5,100),
np.linspace(-5,5,100))
zz0 = np.sin(xx) + yy*yy/8.
zz1 = np.sin(xx) + yy*yy/10.
zz2 = np.sin(xx) + yy*yy/12.
commonset = ( 'origin 0,0',
'size 1,1',
'view 60,20,1,1',
'xrange [0:100]',
'yrange [0:100]',
'zrange [0:150]',
'contour base' )
for hardcopy in (None, "stacked-contours.png", "stacked-contours.gp",):
gp.plot3d( (zz0, dict(_set = commonset + ('xyplane at 10',))),
(zz1, dict(_set = commonset + ('xyplane at 80', 'border 15'), unset=('ztics',))),
(zz2, dict(_set = commonset + ('xyplane at 150', 'border 15'), unset=('ztics',))),
tuplesize=3,
_with = np.array(('lines nosurface',
'labels boxed nosurface')),
square=1,
wait=True,
hardcopy=hardcopy,
multiplot=True)
################################
# testing some error detection
################################
sys.stderr.write("\n\n\n")
sys.stderr.write("==== Testing error detection ====\n")
check_expected_error('I should complain about an invalid "with"',
lambda: gp.plot(np.arange(5), _with = 'bogusstyle'))
check_expected_error('Error detection in multiplots',
lambda: gp.plot( (x**2,),
(-x, x**3),
( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
dict( _with = 'lines',
set = 'poflar',
square = True,
yrange = [-5,5],
legend = a.ravel())),
(x_3d, y_3d, z_3d,
dict( _with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
_3d = True)),
wait=1,
multiplot='title "basic multiplot" layout 2,2', ) )
check_expected_error('gnuplotlib can detect I/O hangs. Here I ask for a delay, so I should detect this and quit after a few seconds...',
lambda: gp.plot( np.arange(5), cmds = 'pause 20' ))