-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFl_Gl_Image_Widget.i
783 lines (602 loc) · 24.2 KB
/
Fl_Gl_Image_Widget.i
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
%define DOCSTRING
"""Wrapper module containing the Gl_Image_Widget class
This is the FLTK widget in the GL_image_display project:
https://github.com/dkogan/GL_image_display
It displays an image in an FLTK widget, using OpenGL internally, which gives us
efficient draws and redraws.
The widget is intended to work with the FLTK GUI tookit:
https://www.fltk.org/
with Python bindings provided by the pyfltk project:
https://pyfltk.sourceforge.io/"""
%enddef
%module(docstring=DOCSTRING,
directors="1",
package="_Fl_Gl_Image_Widget") Fl_Gl_Image_Widget
%feature("compactdefaultargs");
// Enable directors globally, except for some functions that are troublesome,
//and don't obviously benefit from directors
%feature("director");
%feature("nodirector") Fl_Gl_Image_Widget::show;
%feature("nodirector") Fl_Gl_Image_Widget::draw;
%feature("nodirector") Fl_Gl_Image_Widget::resize;
%feature("nodirector") Fl_Gl_Image_Widget::hide;
%feature("nodirector") Fl_Gl_Image_Widget::as_group;
%feature("nodirector") Fl_Gl_Image_Widget::as_window;
%feature("nodirector") Fl_Gl_Image_Widget::as_gl_window;
%feature("nodirector") Fl_Gl_Image_Widget::flush;
// Comes directly from pyfltk/swig/macros.i
// Connect C++ exceptions to Python exceptions
%feature("director:except") {
if ($error != NULL) {
throw Swig::DirectorMethodException();
}
}
%exception {
try { $action }
catch (Swig::DirectorException &e) { SWIG_fail; }
}
// ignore all variables -> no getters and setters
%rename("$ignore",%$isvariable) "";
%feature("autodoc", "1");
%feature("docstring") ::Fl_Gl_Image_Widget
"""Gl_Image_Widget class: efficient image display in FLTK
SYNOPSIS
from fltk import *
import Fl_Gl_Image_Widget
w = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
g = Fl_Gl_Image_Widget.Fl_Gl_Image_Widget(0,0, 800,600)
w.resizable(w)
w.end()
w.show()
g.update_image(image_filename = 'image.jpg')
Fl.run()
This is the FLTK widget in the GL_image_display project:
https://github.com/dkogan/GL_image_display
It displays an image in an FLTK widget, using OpenGL internally, which gives us
efficient draws and redraws.
The widget is intended to work with the FLTK GUI tookit:
https://www.fltk.org/
with Python bindings provided by the pyfltk project:
https://pyfltk.sourceforge.io/
""";
%feature("docstring") Fl_Gl_Image_Widget::Fl_Gl_Image_Widget
"""Fl_Gl_Image_Widget constructor
SYNOPSIS
from fltk import *
import Fl_Gl_Image_Widget
w = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
g = Fl_Gl_Image_Widget.Fl_Gl_Image_Widget(0,0, 800,600)
w.resizable(w)
w.end()
w.show()
g.update_image(image_filename = 'image.jpg')
Fl.run()
The Fl_Gl_Image_Widget is initialized like any other FLTK widget, using the
sequential arguments: x, y, width, height. The data being displayed is NOT given
to this method: Fl_Gl_Image_Widget.update_image() needs to be called to provide
this data
ARGUMENTS:
- x: required integer that specifies the x pixel coordinate of the top-left
corner of the widget
- y: required integer that specifies the y pixel coordinate of the top-left
corner of the widget
- w: required integer that specifies the width of the widget
- h: required integer that specifies the height of the widget
- double_buffered: optional boolean, defaulting to True. On some hardware (i915
for instance) double-buffering causes redrawing bugs (the window sometimes is
never updated), so disabling double-buffering is a good workaround. In
general, single-buffering causes redraw flicker, so double-buffering is
recommended where possible
""";
%feature("docstring") Fl_Gl_Image_Widget::draw
"""Fl_Gl_Image_Widget draw() routine
This is a draw() method that all FLTK widgets have, and works the same way.
Usually the end user does not need to call this method
""";
%feature("docstring") Fl_Gl_Image_Widget::handle
"""Event handling() routine
This is the usual handle() method that all FLTK widgets use to process events.
Usually the end user does not need to call this method
""";
%import(module="fltk") "FL/Fl_Group.H"
%import(module="fltk") "FL/Fl_Widget.H"
%import(module="fltk") "FL/Fl_Window.H"
%import(module="fltk") "FL/Fl_Gl_Window.H"
%{
#define NPY_NO_DEPRECATED_API NPY_API_VERSION
#include "Fl_Gl_Image_Widget.hh"
#include <numpy/arrayobject.h>
%}
// Comes directly from pyfltk/swig/macros.i
%define CHANGE_OWNERSHIP(name)
%pythonappend name##::##name %{
if len(args) == 5:
# retain reference to label
self.my_label = args[-1]
if self.parent() != None:
# delegate ownership to C++
self.this.disown()
%}
%enddef
CHANGE_OWNERSHIP(Fl_Gl_Image_Widget)
%init %{
import_array();
%}
// Errors should throw instead of returning false
%typemap(out) bool {
if(!$1)
{
PyErr_SetString(PyExc_RuntimeError, "Wrapped function failed!");
SWIG_fail;
}
Py_INCREF(Py_True);
$result = Py_True;
}
%typemap(directorout) bool {
$result = PyObject_IsTrue($1);
}
%typemap(in) (const char* image_data,
int image_width,
int image_height,
int image_bpp,
int image_pitch) {
if($input == NULL || $input == Py_None)
{
$1 = NULL;
$2 = 0;
$3 = 0;
$4 = 0;
$5 = 0;
}
else
{
if(!PyArray_Check((PyArrayObject*)$input))
{
PyErr_SetString(PyExc_RuntimeError,
"update_image(): 'image_data' argument must be None or a numpy array");
SWIG_fail;
}
{
const npy_intp* dims = PyArray_DIMS((PyArrayObject*)$input);
int ndim = PyArray_NDIM((PyArrayObject*)$input);
int type = PyArray_TYPE((PyArrayObject*)$input);
const npy_intp* strides = PyArray_STRIDES((PyArrayObject*)$input);
if (type != NPY_UINT8)
{
PyErr_Format(PyExc_RuntimeError,
"update_image(): 'image_data' argument must be a numpy array with type=uint8. Got dtype=%d",
type);
SWIG_fail;
}
if(!(ndim == 2 || ndim == 3))
{
PyErr_Format(PyExc_RuntimeError,
"update_image(): 'image_data' argument must be None or a 2-dimensional or a 3-dimensional numpy array. Got %d-dimensional array",
ndim);
SWIG_fail;
}
if (ndim == 3)
{
if(dims[2] != 3)
{
PyErr_Format(PyExc_RuntimeError,
"update_image(): 'image_data' argument is a 3-dimensional array. I expected the last dim to have length 3 (BGR), but it has length %d",
dims[2]);
SWIG_fail;
}
if(strides[2] != 1)
{
PyErr_Format(PyExc_RuntimeError,
"update_image(): 'image_data' argument is a 3-dimensional array. The last dim (BGR) must be stored densely",
dims[2]);
SWIG_fail;
}
$4 = 24;
}
else
$4 = 8;
if (strides[1] != (ndim == 3 ? 3 : 1))
{
PyErr_Format(PyExc_RuntimeError,
"update_image(): 'image_data' argument must be a numpy array with each row stored densely");
SWIG_fail;
}
$1 = (char*)PyArray_DATA((PyArrayObject*)$input);
$2 = dims[1];
$3 = dims[0];
$5 = strides[0];
}
}
}
%feature("docstring") Fl_Gl_Image_Widget::update_image2
"""Update the image being displayed in the widget
SYNOPSIS
from fltk import *
import Fl_Gl_Image_Widget
w = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
g = Fl_Gl_Image_Widget.Fl_Gl_Image_Widget(0,0, 800,600)
w.resizable(w)
w.end()
w.show()
g.update_image(image_filename = 'image.jpg')
Fl.run()
The data displayed by the widget is providing using this update_image()
method. This method is given the full-resolution data, subject to any decimation
specified in decimation_level argument:
- if decimation_level==0: the given image is displayed at full resolution
- if decimation_level==1: the given image is displayed at half-resolution
- if decimation_level==2: the given image is displayed at quarter-resolution
and so on.
This method may be called as many times as necessary. The decimation level and
image dimensions MUST match those given in the first call to this function.
The data may be passed-in to this method in one of three ways:
- image_filename: the image is read from a file on disk, with the given
filename. image_data must be None
- image_data: the image data is read from the given numpy array. image_filename
must be None
- both image_filename and image_data are None: we draw a black image
An exception is raised on error
ARGUMENTS
- image_filename: optional string, specifying the filename containing the image
to display. Exclusive with image_data
- image_data: optional numpy array containing the data being displayed. Must
have dtype=np.uint8. Exclusive with image_filename. The array shape is either
- (height,width) to pass a grayscale image
- (height,width,3) to pass a BGR color image
- decimation_level: optional integer, defaulting to 0. Specifies the resolution
of the displayed image.
- flip_x: optional boolean, defaulting to False. Display a left/right mirror of the image
- flip_y: optional boolean, defaulting to False. Display an up/down mirror of the image
""";
%typemap(in, numinputs=0) (double* xout, double* yout) (double xout_temp, double yout_temp) {
$1 = &xout_temp;
$2 = &yout_temp;
}
%typemap(argout) (double* xout, double* yout) {
$result = Py_BuildValue("(dd)", *$1, *$2);
}
%typemap(in) (double x, double y) {
if(!PySequence_Check($input))
{
PyErr_SetString(PyExc_RuntimeError,
"Expected one argument: an iterable of length 2. This isn't an iterable");
SWIG_fail;
}
if(2 != PySequence_Length($input))
{
PyErr_SetString(PyExc_RuntimeError,
"Expected one argument: an iterable of length 2. This doesn't have length 2");
SWIG_fail;
}
{
PyObject* o = PySequence_ITEM($input, 0);
if(o == NULL)
{
PyErr_SetString(PyExc_RuntimeError,
"Couldn't retrieve first element in the argument");
SWIG_fail;
}
$1 = PyFloat_AsDouble(o);
Py_DECREF(o);
if(PyErr_Occurred())
{
PyErr_SetString(PyExc_RuntimeError,
"Couldn't interpret first element as 'double'");
SWIG_fail;
}
}
{
PyObject* o = PySequence_ITEM($input, 1);
if(o == NULL)
{
PyErr_SetString(PyExc_RuntimeError,
"Couldn't retrieve second element in the argument");
SWIG_fail;
}
$2 = PyFloat_AsDouble(o);
Py_DECREF(o);
if(PyErr_Occurred())
{
PyErr_SetString(PyExc_RuntimeError,
"Couldn't interpret second element as 'double'");
SWIG_fail;
}
}
}
%feature("docstring") Fl_Gl_Image_Widget::map_pixel_image_from_viewport
"""Compute image pixel coords from viewport pixel coords
SYNOPSIS
from fltk import *
from Fl_Gl_Image_Widget import Fl_Gl_Image_Widget
class Fl_Gl_Image_Widget_Derived(Fl_Gl_Image_Widget):
def handle(self, event):
if event == FL_ENTER:
return 1
if event == FL_MOVE:
try:
qi = self.map_pixel_image_from_viewport( (Fl.event_x(),Fl.event_y()), )
status.value(f'{qi[0]:.2f},{qi[1]:.2f}')
except:
status.value('')
return super().handle(event)
window = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
image = Fl_Gl_Image_Widget_Derived(0,0, 800,580)
status = Fl_Output(0,580,800,20)
window.resizable(image)
window.end()
window.show()
image.update_image(image_filename = 'image.png')
Fl.run()
The map_pixel_image_from_viewport() and map_pixel_viewport_from_image()
functions map between the coordinates of the viewport and the image being
displayed (original image; prior to any decimation). This is useful to implement
user interaction methods that respond to user clicks or draw overlays.
The inputs and outputs both contain floating-point pixels. The map is linear, so
no out-of-bounds checking is done on the input or on the output: negative values
can be ingested or output.
An exception is thrown in case of error (usually, if something hasn't been
initialized yet or if the input is invalid).
ARGUMENTS
- qin: the input pixel coordinate. This is an iterable of length two that
contains two floating-point values. This may be a numpy array of a tuple or
a list, for instance.
RETURNED VALUE
A length-2 tuple containing the mapped pixel coordinate
""";
%feature("docstring") Fl_Gl_Image_Widget::map_pixel_viewport_from_image
"""Compute viewport pixel coords from image pixel coords
SYNOPSIS
from fltk import *
from Fl_Gl_Image_Widget import Fl_Gl_Image_Widget
class Fl_Gl_Image_Widget_Derived(Fl_Gl_Image_Widget):
def handle(self, event):
if event == FL_ENTER:
return 1
if event == FL_MOVE:
try:
qi = self.map_pixel_image_from_viewport( (Fl.event_x(),Fl.event_y()), )
status.value(f'{qi[0]:.2f},{qi[1]:.2f}')
except:
status.value('')
return super().handle(event)
window = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
image = Fl_Gl_Image_Widget_Derived(0,0, 800,580)
status = Fl_Output(0,580,800,20)
window.resizable(image)
window.end()
window.show()
image.update_image(image_filename = 'image.png')
Fl.run()
The map_pixel_image_from_viewport() and map_pixel_viewport_from_image()
functions map between the coordinates of the viewport and the image being
displayed (original image; prior to any decimation). This is useful to implement
user interaction methods that respond to user clicks or draw overlays.
The inputs and outputs both contain floating-point pixels. The map is linear, so
no out-of-bounds checking is done on the input or on the output: negative values
can be ingested or output.
An exception is thrown in case of error (usually, if something hasn't been
initialized yet or if the input is invalid).
ARGUMENTS
- qin: the input pixel coordinate. This is an iterable of length two that
contains two floating-point values. This may be a numpy array of a tuple or
a list, for instance.
RETURNED VALUE
A length-2 tuple containing the mapped pixel coordinate
""";
%typemap(in) (const GL_image_display_line_segments_t* line_segment_sets,
int Nline_segment_sets) (PyObject* set = NULL) {
PyObject* points = NULL;
PyObject* color_rgb = NULL;
if(!PySequence_Check($input))
{
PyErr_SetString(PyExc_RuntimeError,
"$symname() argument isn't a list");
SWIG_fail;
}
$2 = PySequence_Length($input);
$1 =
(GL_image_display_line_segments_t*)malloc($2*sizeof(GL_image_display_line_segments_t));
if($1 == NULL)
{
PyErr_SetString(PyExc_RuntimeError,
"$symname() Couldn't allocate $1");
SWIG_fail;
}
int ndim = 0;
const npy_intp* dims = NULL;
for(int i=0; i<$2; i++)
{
set = PySequence_ITEM($input, i);
if(!PyDict_Check(set))
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): each argument should be a dict");
SWIG_fail;
break;
}
color_rgb = PyDict_GetItemString(set, "color_rgb");
if(color_rgb == NULL)
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): each argument should be a dict with keys 'points' and 'color_rgb'. Missing: 'color_rgb'");
SWIG_fail;
break;
}
if(!PyArray_Check((PyArrayObject*)color_rgb))
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): each argument should be a dict with keys 'points' and 'color_rgb', both pointing to numpy arrays. 'color_rgb' element is not a numpy array");
SWIG_fail;
break;
}
ndim = PyArray_NDIM((PyArrayObject*)color_rgb);
dims = PyArray_DIMS((PyArrayObject*)color_rgb);
if(! (ndim == 1 && dims[0] == 3 &&
PyArray_TYPE((PyArrayObject*)color_rgb) == NPY_FLOAT32 &&
PyArray_CHKFLAGS((PyArrayObject*)color_rgb, NPY_ARRAY_C_CONTIGUOUS)) )
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): color_rgb needs to have shape (3,), contain float32 and be contiguous");
SWIG_fail;
break;
}
points = PyDict_GetItemString(set, "points");
if(points == NULL)
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): each argument should be a dict with keys 'points' and 'color_rgb'. Missing: 'points'");
SWIG_fail;
break;
}
if(!PyArray_Check((PyArrayObject*)points))
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): each argument should be a dict with keys 'points' and 'color_rgb', both pointing to numpy arrays. 'points' element is not a numpy array");
SWIG_fail;
break;
}
ndim = PyArray_NDIM((PyArrayObject*)points);
dims = PyArray_DIMS((PyArrayObject*)points);
if(! (ndim == 3 && dims[1] == 2 && dims[2] == 2 &&
PyArray_TYPE((PyArrayObject*)points) == NPY_FLOAT32 &&
PyArray_CHKFLAGS((PyArrayObject*)points, NPY_ARRAY_C_CONTIGUOUS)) )
{
PyErr_SetString(PyExc_RuntimeError,
"$symname(): points need to have shape (N,2,2), contain float32 and be contiguous");
SWIG_fail;
break;
}
$1[i].segments.Nsegments = dims[0];
memcpy($1[i].segments.color_rgb,
PyArray_DATA((PyArrayObject*)color_rgb),
3*sizeof(float));
$1[i].points = (const float*)PyArray_DATA((PyArrayObject*)points);
Py_XDECREF(set);
set = NULL;
}
}
%typemap(freearg) (const GL_image_display_line_segments_t* line_segment_sets,
int Nline_segment_sets) {
free($1);
Py_XDECREF(set$argnum);
}
%feature("docstring") Fl_Gl_Image_Widget::set_panzoom
"""Updates the pan, zoom settings of an image view
SYNOPSIS
from fltk import *
from Fl_Gl_Image_Widget import Fl_Gl_Image_Widget
class Fl_Gl_Image_Widget_Derived(Fl_Gl_Image_Widget):
def set_panzoom(self,
x_centerpixel, y_centerpixel,
visible_width_pixels,
panzoom_siblings = True):
r'''Pan/zoom the image
This is an override of the function to do this: any request to
pan/zoom the widget will come here first. panzoom_siblings
dispatches any pan/zoom commands to all the widgets, so that they
all work in unison.
'''
if not panzoom_siblings:
return super().set_panzoom(x_centerpixel, y_centerpixel,
visible_width_pixels)
# All the widgets should pan/zoom together
return \
all( w.set_panzoom(x_centerpixel, y_centerpixel,
visible_width_pixels,
panzoom_siblings = False) \
for w in (widget_image0, widget_image1) )
window = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
image0 = Fl_Gl_Image_Widget_Derived(0, 0, 400,600)
image1 = Fl_Gl_Image_Widget_Derived(400,0, 400,600)
window.resizable(image)
window.end()
window.show()
image0.update_image(image_filename = 'image0.png')
image1.update_image(image_filename = 'image1.png')
Fl.run()
This is a thin wrapper around the C API function GL_image_display_set_panzoom().
USUALLY there's no reason to the user to call this: the default
Fl_Gl_Image_Widget behavior already includes interactive navigation that calls
this function as needed.
The primary reason this is available in Python is to allow the user to hook
these calls in their derived classes to enhance or modify the pan/zoom
behaviors. The example in the SYNOPSIS above displays two images side by size,
and pans/zooms them in unison: when the user changes the view in one widget, the
change is applied to BOTH widgets.
If any of the given values are Inf or NaN or abs() >= 1e20, we use the
previously-set value.
ARGUMENTS
- x_centerpixel, y_centerpixel: the pixel coordinates of the image to place in
the center of the viewport. This is the 'pan' setting
- visible_width_pixels: how many horizontal image pixels should span the
viewport. This is the 'zoom' setting
RETURNED VALUE
None on success. An exception is thrown in case of error (usually, if something
hasn't been initialized yet or if the input is invalid).
""";
%rename(_set_lines) set_lines;
// In C++ update_image() is the legacy function and update_image2() is the "real" function.
// Here I use the "update_image2" wrapping for both names
%ignore Fl_Gl_Image_Widget::update_image;
%include "Fl_Gl_Image_Widget.hh"
%pythoncode %{
def set_lines(self, *args):
"""Compute image pixel coords from viewport pixel coords
SYNOPSIS
from fltk import *
from Fl_Gl_Image_Widget import Fl_Gl_Image_Widget
class Fl_Gl_Image_Widget_Derived(Fl_Gl_Image_Widget):
def handle(self, event):
if event == FL_PUSH:
try:
qv = (Fl.event_x(),Fl.event_y())
qi = \
np.array( \
self.map_pixel_image_from_viewport(qv),
dtype=float ).round()
x,y = q
self.set_lines( dict(points =
np.array( (((x - 50, y),
(x + 50, y)),
((x, y - 50),
(x, y + 50))),
dtype=np.float32),
color_rgb = np.array((1,0,0),
dtype=np.float32) ))
except:
self.set_lines()
return 1
return super().handle(event)
window = Fl_Window(800, 600, 'Image display with Fl_Gl_Image_Widget')
image = Fl_Gl_Image_Widget_Derived(0,0, 800,600)
window.resizable(image)
window.end()
window.show()
image.update_image(image_filename = 'image.png')
Fl.run()
Updates the set of lines we draw as an overlay on top of the image. The
hierarchy:
- Each SET of lines is drawn with the same color, and consists of separate line
SEGMENTS
- Each line SEGMENT connects two independent points (x0,y0) and (x1,y1) in image
pixel coordinates.
Each call looks like
set_lines( SET, SET, SET, ... )
Where each SET is
dict(points = POINTS,
color_rgb = COLOR)
- POINTS is a numpy array of shape (Nsegments,2,2) where each innermost row is
(x,y). This array must have dtype=np.float32 and must be stored contiguously
- COLOR is the (red,green,blue) tuple to use for the line. This is a numpy array
of shape (3,). This array must have dtype=np.float32 and must be stored
contiguously. The color is passed directly to OpenGL, and uses values in [0,1]
RETURNED VALUE
None on success. An exception is thrown in case of error (usually, if something
hasn't been initialized yet or if the input is invalid).
"""
return self._set_lines(args)
Fl_Gl_Image_Widget.set_lines = set_lines
# In C++ update_image() is the legacy function and update_image2() is the "real" function.
# Here I use the "update_image2" wrapping for both names
Fl_Gl_Image_Widget.update_image = Fl_Gl_Image_Widget.update_image2
%}