forked from lucab/ntop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprng.c
504 lines (401 loc) · 14 KB
/
prng.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "prng.h"
#define PI 3.141592653589793
long hash31(long long a, long long b, long long x)
{
long long result;
long lresult;
// return a hash of x using a and b mod (2^31 - 1)
// may need to do another mod afterwards, or drop high bits
// depending on d, number of bad guys
// 2^31 - 1 = 2147483647
// result = ((long long) a)*((long long) x)+((long long) b);
result=(a * x) + b;
result = ((result >> HL) + result) & MOD;
lresult=(long) result;
return(lresult);
}
long fourwise(long long a, long long b, long long c, long long d, long long x)
{
long long result;
long lresult;
// returns values that are 4-wise independent by repeated calls
// to the pairwise indpendent routine.
result = hash31(hash31(hash31(x,a,b),x,c),x,d);
lresult = (long) result;
return lresult;
}
/*************************************************************************/
/* First, some pseudo-random number generators sourced from other places */
/*************************************************************************/
// There are *THREE* alternate implementations of PRNGs here.
// One taken from Numerical Recipes in C, the second from www.agner.org
// The third is an internal C random library, srand
// The variable usenric controls which one is used: pick one
// and stick with it, switching between the two will give unpredictable
// results. This is controlled by the randinit procedure, call it with
// usenric == 1 to use the Numerical Recipes gens
// usenric == 2 to use the agner.org PRNGs or
// usenric == 3 to use the inbuilt C routines
// from the math library:
extern double sqrt(double);
// following definitions needed for the random number generator
#define IA 16807
#define IM 2147483647
#define AM (1.0/IM)
#define IQ 127773
#define IR 2836
#define NDIV (1+(IM-1)/NTAB)
#define EPS 1.2e-7
#define RNMX (1.0-EPS)
float ran1(prng_type * prng) {
// A Random Number Generator that picks a uniform [0,1] random number
// From Numerical Recipes, page 280
// Should be called with a NEGATIVE value of idum to initialize
// subsequent calls should not alter idum
int j;
long k;
float temp;
if (prng->floatidum <= 0 || !prng->iy) {
if (-(prng->floatidum) < 1) prng->floatidum=1;
else prng->floatidum = -(prng->floatidum);
for (j=NTAB+7;j>=0;j--) {
k=(prng->floatidum)/IQ;
prng->floatidum=IA*(prng->floatidum-k*IQ)-IR*k;
if (prng->floatidum < 0) prng->floatidum+=IM;
if (j<NTAB) prng->iv[j]=prng->floatidum;
}
prng->iy=prng->iv[0];
}
k = (prng->floatidum)/IQ;
prng->floatidum=IA*(prng->floatidum-k*IQ)-IR*k;
if (prng->floatidum<0) prng->floatidum += IM;
j = prng->iy/NDIV;
prng->iy=prng->iv[j];
prng->iv[j]=prng->floatidum;
if ((temp=AM*prng->iy) > RNMX) return RNMX;
else return temp;
}
long ran2(prng_type * prng) {
// A Random Number Generator that picks a uniform random number
// from the range of long integers.
// From Numerical Recipes, page 280
// Should be called with a NEGATIVE value of idum to initialize
// subsequent calls should not alter idum
// This is a hacked version of the above procedure, so proceed with
// caution.
int j;
long k;
if (prng->intidum <= 0 || !prng->iy) {
if (-(prng->intidum) < 1) prng->intidum=1;
else prng->intidum = -(prng->intidum);
for (j=NTAB+7;j>=0;j--) {
k=(prng->intidum)/IQ;
prng->intidum=IA*(prng->intidum-k*IQ)-IR*k;
if (prng->intidum < 0) prng->intidum+=IM;
if (j<NTAB) prng->iv[j]=prng->intidum;
}
prng->iy=prng->iv[0];
}
k = (prng->intidum)/IQ;
prng->intidum=IA*(prng->intidum-k*IQ)-IR*k;
if (prng->intidum<0) prng->intidum += IM;
j = prng->iy/NDIV;
prng->iy=prng->iv[j];
prng->iv[j]=prng->intidum;
return prng->iy;
}
/**********************************************************************/
// Following routines are from www.agner.org
/************************* RANROTB.C ******************** AgF 1999-03-03 *
* Random Number generator 'RANROT' type B *
* *
* This is a lagged-Fibonacci type of random number generator with *
* rotation of bits. The algorithm is: *
* X[n] = ((X[n-j] rotl r1) + (X[n-k] rotl r2)) modulo 2^b *
* *
* The last k values of X are stored in a circular buffer named *
* randbuffer. *
* *
* This version works with any integer size: 16, 32, 64 bits etc. *
* The integers must be unsigned. The resolution depends on the integer *
* size. *
* *
* Note that the function RanrotAInit must be called before the first *
* call to RanrotA or iRanrotA *
* *
* The theory of the RANROT type of generators is described at *
* www.agner.org/random/ranrot.htm *
* *
*************************************************************************/
// this should be almost verbatim from the above webpage.
// although it's been hacked with a little bit...
unsigned long rotl (unsigned long x, unsigned long r) {
return (x << r) | (x >> (sizeof(x)*8-r));}
/* define parameters (R1 and R2 must be smaller than the integer size): */
#define JJ 10
#define R1 5
#define R2 3
/* returns some random bits */
unsigned long ran3(prng_type * prng) {
unsigned long x;
/* generate next random number */
x = prng->randbuffer[prng->r_p1] = rotl(prng->randbuffer[prng->r_p2], R1)
+ rotl(prng->randbuffer[prng->r_p1], R2);
/* rotate list pointers */
if (--prng->r_p1 < 0) prng->r_p1 = KK - 1;
if (--prng->r_p2 < 0) prng->r_p2 = KK - 1;
/* conversion to float */
return x;
}
/* returns a random number between 0 and 1 */
double ran4(prng_type * prng) {
/* conversion to floating point type */
return (ran3(prng) * prng->scale);
}
/* this function initializes the random number generator. */
/* Must be called before the first call to RanrotA or iRanrotA */
void RanrotAInit (prng_type * prng, unsigned long seed) {
int i;
/* put semi-random numbers into the buffer */
for (i=0; i<KK; i++) {
prng->randbuffer[i] = seed;
seed = rotl(seed,5) + 97;}
/* initialize pointers to circular buffer */
prng->r_p1 = 0; prng->r_p2 = JJ;
/* randomize */
for (i = 0; i < 300; i++) ran3(prng);
prng->scale = ldexp(1, -8*sizeof(unsigned long));
}
/**********************************************************************/
/* These are wrapper procedures for the uniform random number gens */
/**********************************************************************/
long prng_int(prng_type * prng) {
// returns a pseudo-random long integer. Initialise the generator
// before use!
long response=0;
switch (prng->usenric)
{
case 1 : response=(ran2(prng)); break;
case 2 : response=(ran3(prng)); break;
// case 3 : response=(lrand48()); break;
}
return response;
}
float prng_float(prng_type * prng) {
// returns a pseudo-random float in the range [0.0,1.0].
// Initialise the generator before use!
float result=0;
switch (prng->usenric)
{
case 1 : result=(ran1(prng)); break;
case 2 : result=(ran4(prng)); break;
// case 3 : result=(drand48()); break;
}
return result;
}
prng_type * prng_Init(long seed, int nric) {
// Initialise the random number generators. nric determines
// which algorithm to use, 1 for Numerical Recipes in C,
// 0 for the other one.
prng_type * result;
result=(prng_type *) calloc(1,sizeof(prng_type));
result->iy=0;
result->usenric=nric;
result->floatidum=-1;
result->intidum=-1;
result->iset=0;
// set a global variable to record which algorithm to use
switch (nric)
{
case 2 :
RanrotAInit(result,seed);
break;
case 1 :
if (seed>0) {
// to initialise the NRiC PRNGs, call it with a negative value
// so make sure it gets a negative value!
result->floatidum = -(seed); result->intidum = -(seed);
} else {
result->floatidum=seed; result->intidum=seed;
}
break;
case 3 :
srand(seed);
break;
}
prng_float(result);
prng_int(result);
// call the routines to actually initialise them
return(result);
}
void prng_Reseed(prng_type * prng, long seed)
{
switch (prng->usenric)
{
case 2 :
RanrotAInit(prng,seed);
break;
case 1 :
if (seed>0) {
// to initialise the NRiC PRNGs, call it with a negative value
// so make sure it gets a negative value!
prng->floatidum = -(seed); prng->intidum = -(seed);
} else {
prng->floatidum=seed; prng->intidum=seed;
}
break;
case 3 :
srand(seed);
break;
}
}
void prng_Destroy(prng_type * prng)
{
free(prng);
prng=NULL;
}
/**********************************************************************/
/* Next, a load of routines that convert uniform random variables */
/* from [0,1] to stable distribitions, such as gaussian, levy or */
/* general */
/**********************************************************************/
double prng_normal(prng_type * prng) {
// Pick random values distributed N(0,1) using the Box-Muller transform
// Taken from numerical recipes in C p289
// picks two at a time, returns one per call (buffers the other)
double fac,rsq,v1,v2;
if (prng->iset == 0) {
do {
v1 = 2.0*prng_float(prng)-1.0;
v2 = 2.0*prng_float(prng)-1.0;
rsq=v1*v1+v2*v2;
} while (rsq >= 1.0 || rsq == 0.0);
fac = sqrt((double) -2.0*log((double)rsq)/rsq);
prng->gset=v1*fac;
prng->iset=1;
return v2*fac;
}
else {
prng->iset = 0;
return prng->gset;
}
}
double prng_stabledbn(prng_type * prng, double alpha) {
// From 'stable distributions', John Nolan, manuscript, p24
// we set beta = 0 by analogy with the normal and cauchy case
// identical to the above routine, but returns a double instead
// of a long double (you'll see this a lot...)
double theta, W, holder, left, right;
theta=PI*(prng_float(prng) - 0.5);
W = -log(prng_float(prng)); // takes natural log
// printf("theta %Lf, W = %Lf \n", theta, W);
// some notes on Nolan's notes:
// if beta == 0 then c(alpha,beta)=1; theta_0 = 0
// expression reduces to sin alpha.theta / (cos theta) ^1/alpha
// * (cos (theta - alpha theta)/W) ^(1-alpha)/alpha
left = (sin(alpha*theta)/pow(cos(theta), 1.0/alpha));
right= pow(cos(theta*(1.0 - alpha))/W, ((1.0-alpha)/alpha));
holder=left*right;
return(holder);
}
long double prng_cauchy(prng_type * prng) {
// return a value from the cauchy distribution
// using the formula in 'Stable Distributions', p23
// this is distributed Cauchy(1,0)
return(tan(PI*(prng_float(prng) - 0.5)));
}
double prng_altstab(prng_type * prng, double p)
{
double u,v,result;
u=prng_float(prng);
v=prng_float(prng);
result=pow(u,p);
// result=exp(p*log(u));
if (v<0.5) result=-result;
return(result);
}
/*
long double levy() {
// this would give the levy distribution, except it doesn't get used
long double z;
z=gasdev();
return (1.0/(z*z));
}
*/
double prng_stable(prng_type * prng, double alpha) {
// wrapper for the stable distributions above:
// call the appropriate routine based on the value of alpha given
// initialising it with the seed in idum
// randinit must be called before entering this procedure for
// the first time since it uses the random generators
if (alpha==2.0)
return(prng_normal(prng));
else if (alpha==1.0)
return(prng_cauchy(prng));
else if (alpha<0.01)
return(prng_altstab(prng,-50.0));
else return (prng_stabledbn(prng,alpha));
}
double zeta(long n, double theta)
{
// the zeta function, used by the below zipf function
// (this is not often called from outside this library)
// ... but have made it public now to speed things up
int i;
double ans=0.0;
for (i=1; i <= n; i++)
ans += pow(1./(double)i, theta);
return(ans);
}
double fastzipf(double theta, long n, double zetan, prng_type * prng) {
// this draws values from the zipf distribution
// this is mainly useful for test generation purposes
// n is range, theta is skewness parameter
// theta = 0 gives uniform dbn,
// theta > 1 gives highly skewed dbn.
// original code due to Flip Korn, used with permission
double alpha;
double eta;
double u;
double uz;
long double val;
// randinit must be called before entering this procedure for
// the first time since it uses the random generators
alpha = 1. / (1. - theta);
eta = (1. - pow(2./n, 1. - theta)) / (1. - zeta(2.,theta)/zetan);
u = prng_float(prng);
uz = u * zetan;
if (uz < 1.) val = 1;
else if (uz < (1. + pow(0.5, theta))) val = 2;
else val = 1 + (long long)(n * pow(eta*u - eta + 1., alpha));
return(val);
}
/*
long double zipf(double theta, long n) {
// this draws values from the zipf distribution
// this is mainly useful for test generation purposes
// n is range, theta is skewness parameter
// theta = 0 gives uniform dbn,
// theta > 1 gives highly skewed dbn.
double alpha;
double zetan;
double eta;
double u;
double uz;
long double val;
// randinit must be called before entering this procedure for
// the first time since it uses the random generators
alpha = 1. / (1. - theta);
zetan = zeta(n, theta);
eta = (1. - pow(2./n, 1. - theta)) / (1. - zeta(2.,theta)/zetan);
u = randomfl();
uz = u * zetan;
if (uz < 1.) val = 1;
else if (uz < (1. + pow(0.5, theta))) val = 2;
else val = 1 + (long long)(n * pow(eta*u - eta + 1., alpha));
return(val);
}
*/