forked from amzn/convolutional-handwriting-gan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_wordsLMDB.py
174 lines (157 loc) · 6.74 KB
/
generate_wordsLMDB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
"""
Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
SPDX-License-Identifier: MIT
General-purpose script to generate lmdb with ScrabbleGAN generated images.
You need to specify the dataset ('--dataname'), the path to save the lmdb ('--results_dir'), the number of images to
synthesize can be a few values to generate a few lmdbs of different sizes,('--n_synth') and the model name ('--name').
Example:
python generate_wordsLMDB.py --dataname IAMcharH32rmPunct --results_dir ./lmdb_files/IAM_concat --n_synth 100,200 --name model_name
See options/base_options.py and options/train_options.py for more training options.
"""
import os, stat
from options.test_options import TestOptions
from data import create_dataset
from models import create_model
import pandas as pd
import lmdb
import io
from data.create_text_data import writeCache, find_rot_angle
from PIL import Image
from tqdm import tqdm
from joblib import cpu_count, Parallel, delayed
import torch
from util.util import prepare_z_y
import six
if __name__ == '__main__':
opt = TestOptions().parse() # get test options
# hard-code some parameters for test
opt.num_threads = 0 # test code only supports num_threads = 1
opt.batch_size = 1 # test code only supports batch_size = 1
opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed.
opt.no_flip = True # no flip; comment this line if results on flipped images are needed.
opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file.
dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options
model = create_model(opt) # create a model given opt.model and other options
model.setup(opt) # regular setup: load and print networks; create schedulers
model.eval()
exception_chars = ['ï', 'ü', '.', '_', 'ö', ',', 'ã', 'ñ']
if opt.lex.endswith('.tsv'):
lex = pd.read_csv(opt.lex, sep='\t')['lemme']
lex = [word.split()[-1] for word in lex if
(pd.notnull(word) and all(char not in word for char in exception_chars))]
elif opt.lex.endswith('.txt'):
with open(opt.lex, 'rb') as f:
lex = f.read().splitlines()
lex_updated = []
for word in lex:
try:
word = word.decode("utf-8")
except:
continue
if len(word) < 20:
lex_updated.append(word)
lex = lex
min_factor, max_factor = 1, 1
n_synth = opt.n_synth.split(',')
env_paths = [opt.results_dir + n + 'k' for n in opt.n_synth.split(',')]
if not os.path.exists('/'.join(opt.results_dir.split('/')[:-1])):
os.makedirs('/'.join(opt.results_dir.split('/')[:-1]))
env = [lmdb.open(env_path, map_size=1099511627776) for env_path in env_paths]
n_synth = [int(i)*1000 for i in n_synth]
max_n_synth = max(n_synth)
cache = {}
cnt = 1
print(model.netG.blocks[0][0].conv1.weight[0,0,:,:])
print(model.netG.blocks[0][0].bn1.bias.weight[0,:10])
print(model.netG.blocks[0][0].bn1.gain.weight[0,:10])
print(model.netG.linear.bias[:10])
print(opt.model)
def GenImg(words=None, z=None):
model.forward(words, z)
im = model.fake.data.cpu().numpy().squeeze(0).squeeze(0) * 255
im = Image.fromarray(im).convert('RGB')
imgByteArr = io.BytesIO()
im.save(imgByteArr, format='tiff')
wordBin = imgByteArr.getvalue()
return wordBin, model.words[0].decode('utf-8')
def GenImgs(words=None, z=None, nsamples=5, device=0):
model.netG.to(device)
model.z, model.label_fake = prepare_z_y(opt.batch_size, opt.dim_z, len(model.lex),
device=device, fp16=opt.G_fp16)
model.device = device
if words is None:
words = nsamples*[words]
z = nsamples*[z]
words_encoded = []
wordBins = []
for i in tqdm(range(len(words))):
wordBin, word = GenImg(words[i], z[i])
words_encoded.append(word)
wordBins.append(wordBin)
return wordBins, words_encoded
if opt.no_concat_dataset:
cnt_orig = 0
else:
env_orig = lmdb.open(
os.path.abspath(opt.dataroot),
max_readers=1,
readonly=True,
lock=False,
readahead=False,
meminit=False)
cnt_orig = env_orig.stat()['entries'] // 2
with env_orig.begin() as txn:
for index in tqdm(range(1, cnt_orig + 1)):
img_key = 'image-%09d' % index
imgbuf = txn.get(img_key.encode('utf-8'))
label_key = 'label-%09d' % index
label = txn.get(label_key.encode('utf-8'))
buf = six.BytesIO()
buf.write(imgbuf)
buf.seek(0)
img = Image.open(buf)
imgByteArr = io.BytesIO()
img.save(imgByteArr, format='tiff')
img = imgByteArr.getvalue()
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = img
cache[labelKey] = label
if cnt % 1000 == 0:
for ev in env:
writeCache(ev, cache)
cache = {}
cnt += 1
for ev in env:
writeCache(ev, cache)
for iter in range((max_n_synth//1000000)+1):
if iter==0:
n_imgs = max_n_synth % 1000000
else:
n_imgs = 1000000
n_jobs = torch.cuda.device_count()
if n_jobs == 0: # Use cpu
# let n_jobs = 1
_kwargs = dict(device="cpu", nsamples=int(n_imgs))
data = [GenImgs(**_kwargs)] # EDIT https://joblib.readthedocs.io/en/latest/parallel.html
else:
kwargs_gen = (dict(device=i, nsamples=int(n_imgs / n_jobs)) for i in range(n_jobs))
data = Parallel(n_jobs=n_jobs)(delayed(GenImgs)(**kwargs) for kwargs in kwargs_gen)
for d in data:
for i in tqdm(range(len(d[0]))):
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = d[0][i]
cache[labelKey] = d[1][i]
if (cnt-cnt_orig) % 1000 == 0:
for n in range(len(n_synth)):
if n_synth[n]>=(cnt-cnt_orig):
writeCache(env[n], cache)
cache = {}
cnt += 1
for i in range(len(n_synth)):
nSamples = cnt_orig + n_synth[i]
cache['num-samples'] = str(nSamples)
writeCache(env[i], cache)
env[i].close()
os.chmod(env_paths[i], 0o555)