forked from GT-Vision-Lab/VQA_LSTM_CNN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
executable file
·314 lines (252 loc) · 10.6 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
require 'nn'
require 'torch'
require 'nngraph'
require 'optim'
require 'misc.netdef'
require 'cutorch'
require 'cunn'
require 'hdf5'
cjson=require('cjson')
LSTM=require 'misc.LSTM'
-------------------------------------------------------------------------------
-- Input arguments and options
-------------------------------------------------------------------------------
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a Visual Question Answering model')
cmd:text()
cmd:text('Options')
-- Data input settings
cmd:option('-input_img_h5','data_img.h5','path to the h5file containing the image feature')
cmd:option('-input_ques_h5','data_prepro.h5','path to the h5file containing the preprocessed dataset')
cmd:option('-input_json','data_prepro.json','path to the json file containing additional info and vocab')
-- Model parameter settings
cmd:option('-learning_rate',3e-4,'learning rate for rmsprop')
cmd:option('-learning_rate_decay_start', -1, 'at what iteration to start decaying learning rate? (-1 = dont)')
cmd:option('-learning_rate_decay_every', 50000, 'every how many iterations thereafter to drop LR by half?')
cmd:option('-batch_size',500,'batch_size for each iterations')
cmd:option('-max_iters', 150000, 'max number of iterations to run for ')
cmd:option('-input_encoding_size', 200, 'he encoding size of each token in the vocabulary')
cmd:option('-rnn_size',512,'size of the rnn in number of hidden nodes in each layer')
cmd:option('-rnn_layer',2,'number of the rnn layer')
cmd:option('-common_embedding_size', 1024, 'size of the common embedding vector')
cmd:option('-num_output', 1000, 'number of output answers')
cmd:option('-img_norm', 1, 'normalize the image feature. 1 = normalize, 0 = not normalize')
--check point
cmd:option('-save_checkpoint_every', 25000, 'how often to save a model checkpoint?')
cmd:option('-checkpoint_path', 'model/', 'folder to save checkpoints')
-- misc
cmd:option('-backend', 'cudnn', 'nn|cudnn')
cmd:option('-gpuid', 0, 'which gpu to use. -1 = use CPU')
cmd:option('-seed', 123, 'random number generator seed to use')
opt = cmd:parse(arg)
print(opt)
torch.manualSeed(opt.seed)
torch.setdefaulttensortype('torch.FloatTensor') -- for CPU
require 'misc.RNNUtils'
if opt.gpuid >= 0 then
require 'cutorch'
require 'cunn'
if opt.backend == 'cudnn' then require 'cudnn' end
cutorch.manualSeed(opt.seed)
cutorch.setDevice(opt.gpuid + 1)
end
------------------------------------------------------------------------
-- Setting the parameters
------------------------------------------------------------------------
local model_path = opt.checkpoint_path
local batch_size=opt.batch_size
local embedding_size_q=opt.input_encoding_size
local lstm_size_q=opt.rnn_size
local nlstm_layers_q=opt.rnn_layer
local nhimage=4096
local common_embedding_size=opt.common_embedding_size
local noutput=opt.num_output
local dummy_output_size=1
local decay_factor = 0.99997592083 -- 50000
paths.mkdir(model_path)
------------------------------------------------------------------------
-- Loading Dataset
------------------------------------------------------------------------
local file = io.open(opt.input_json, 'r')
local text = file:read()
file:close()
json_file = cjson.decode(text)
print('DataLoader loading h5 file: ', opt.input_ques_h5)
local dataset = {}
local h5_file = hdf5.open(opt.input_ques_h5, 'r')
dataset['question'] = h5_file:read('/ques_train'):all()
dataset['lengths_q'] = h5_file:read('/ques_length_train'):all()
dataset['img_list'] = h5_file:read('/img_pos_train'):all()
dataset['answers'] = h5_file:read('/answers'):all()
h5_file:close()
print('DataLoader loading h5 file: ', opt.input_img_h5)
local h5_file = hdf5.open(opt.input_img_h5, 'r')
dataset['fv_im'] = h5_file:read('/images_train'):all()
h5_file:close()
dataset['question'] = right_align(dataset['question'],dataset['lengths_q'])
-- Normalize the image feature
if opt.img_norm == 1 then
local nm=torch.sqrt(torch.sum(torch.cmul(dataset['fv_im'],dataset['fv_im']),2))
dataset['fv_im']=torch.cdiv(dataset['fv_im'],torch.repeatTensor(nm,1,4096)):float()
end
local count = 0
for i, w in pairs(json_file['ix_to_word']) do count = count + 1 end
local vocabulary_size_q=count
collectgarbage()
------------------------------------------------------------------------
--Design Parameters and Network Definitions
------------------------------------------------------------------------
print('Building the model...')
buffer_size_q=dataset['question']:size()[2]
--Network definitions
--VQA
--embedding: word-embedding
embedding_net_q=nn.Sequential()
:add(nn.Linear(vocabulary_size_q,embedding_size_q))
:add(nn.Dropout(0.5))
:add(nn.Tanh())
--encoder: RNN body
encoder_net_q=LSTM.lstm_conventional(embedding_size_q,lstm_size_q,dummy_output_size,nlstm_layers_q,0.5)
--MULTIMODAL
--multimodal way of combining different spaces
multimodal_net=nn.Sequential()
:add(netdef.AxB(2*lstm_size_q*nlstm_layers_q,nhimage,common_embedding_size,0.5))
:add(nn.Dropout(0.5))
:add(nn.Linear(common_embedding_size,noutput))
--criterion
criterion=nn.CrossEntropyCriterion()
--Optimization parameters
dummy_state_q=torch.Tensor(lstm_size_q*nlstm_layers_q*2):fill(0)
dummy_output_q=torch.Tensor(dummy_output_size):fill(0)
if opt.gpuid >= 0 then
print('shipped data function to cuda...')
embedding_net_q = embedding_net_q:cuda()
encoder_net_q = encoder_net_q:cuda()
multimodal_net = multimodal_net:cuda()
criterion = criterion:cuda()
dummy_state_q = dummy_state_q:cuda()
dummy_output_q = dummy_output_q:cuda()
end
--Processings
embedding_w_q,embedding_dw_q=embedding_net_q:getParameters()
embedding_w_q:uniform(-0.08, 0.08)
encoder_w_q,encoder_dw_q=encoder_net_q:getParameters()
encoder_w_q:uniform(-0.08, 0.08)
multimodal_w,multimodal_dw=multimodal_net:getParameters()
multimodal_w:uniform(-0.08, 0.08)
sizes={encoder_w_q:size(1),embedding_w_q:size(1),multimodal_w:size(1)}
-- optimization parameter
local optimize={}
optimize.maxIter=opt.max_iters
optimize.learningRate=opt.learning_rate
optimize.update_grad_per_n_batches=1
optimize.winit=join_vector({encoder_w_q,embedding_w_q,multimodal_w})
------------------------------------------------------------------------
-- Next batch for train
------------------------------------------------------------------------
function dataset:next_batch()
local qinds=torch.LongTensor(batch_size):fill(0)
local iminds=torch.LongTensor(batch_size):fill(0)
local nqs=dataset['question']:size(1)
-- we use the last val_num data for validation (the data already randomlized when created)
for i=1,batch_size do
qinds[i]=torch.random(nqs)
iminds[i]=dataset['img_list'][qinds[i]]
end
local fv_sorted_q=sort_encoding_onehot_right_align(dataset['question']:index(1,qinds),dataset['lengths_q']:index(1,qinds),vocabulary_size_q)
local fv_im=dataset['fv_im']:index(1,iminds)
local labels=dataset['answers']:index(1,qinds)
-- ship to gpu
if opt.gpuid >= 0 then
fv_sorted_q[1]=fv_sorted_q[1]:cuda()
fv_sorted_q[3]=fv_sorted_q[3]:cuda()
fv_sorted_q[4]=fv_sorted_q[4]:cuda()
fv_im = fv_im:cuda()
labels = labels:cuda()
end
return fv_sorted_q,fv_im, labels ,batch_size
end
------------------------------------------------------------------------
-- Objective Function and Optimization
------------------------------------------------------------------------
-- duplicate the RNN
local encoder_net_buffer_q=dupe_rnn(encoder_net_q,buffer_size_q)
-- Objective function
function JdJ(x)
local params=split_vector(x,sizes)
--load x to net parameters--
if encoder_w_q~=params[1] then
encoder_w_q:copy(params[1])
for i=1,buffer_size_q do
encoder_net_buffer_q[2][i]:copy(params[1])
end
end
if embedding_w_q~=params[2] then
embedding_w_q:copy(params[2])
end
if multimodal_w~=params[3] then
multimodal_w:copy(params[3])
end
--clear gradients--
for i=1,buffer_size_q do
encoder_net_buffer_q[3][i]:zero()
end
embedding_dw_q:zero()
multimodal_dw:zero()
--grab a batch--
local fv_sorted_q,fv_im,labels,batch_size=dataset:next_batch()
local question_max_length=fv_sorted_q[2]:size(1)
--embedding forward--
local word_embedding_q=split_vector(embedding_net_q:forward(fv_sorted_q[1]),fv_sorted_q[2])
--encoder forward--
local states_q,junk2=rnn_forward(encoder_net_buffer_q,torch.repeatTensor(dummy_state_q:fill(0),batch_size,1),word_embedding_q,fv_sorted_q[2])
--multimodal/criterion forward--
local tv_q=states_q[question_max_length+1]:index(1,fv_sorted_q[4])
local scores=multimodal_net:forward({tv_q,fv_im})
local f=criterion:forward(scores,labels)
--multimodal/criterion backward--
local dscores=criterion:backward(scores,labels)
local tmp=multimodal_net:backward({tv_q,fv_im},dscores)
local dtv_q=tmp[1]:index(1,fv_sorted_q[3])
--encoder backward
local junk4,dword_embedding_q=rnn_backward(encoder_net_buffer_q,dtv_q,dummy_output_q,states_q,word_embedding_q,fv_sorted_q[2])
--embedding backward--
dword_embedding_q=join_vector(dword_embedding_q)
embedding_net_q:backward(fv_sorted_q[1],dword_embedding_q)
--summarize f and gradient
local encoder_adw_q=encoder_dw_q:clone():zero()
for i=1,question_max_length do
encoder_adw_q=encoder_adw_q+encoder_net_buffer_q[3][i]
end
gradients=join_vector({encoder_adw_q,embedding_dw_q,multimodal_dw})
gradients:clamp(-10,10)
if running_avg == nil then
running_avg = f
end
running_avg=running_avg*0.95+f*0.05
return f,gradients
end
----------------------------------------------------------------------------------------------
-- Training
----------------------------------------------------------------------------------------------
-- With current setting, the network seems never overfitting, so we just use all the data to train
local state={}
for iter = 1, opt.max_iters do
if iter%opt.save_checkpoint_every == 0 then
paths.mkdir(model_path..'save')
torch.save(string.format(model_path..'save/lstm_save_iter%d.t7',iter),
{encoder_w_q=encoder_w_q,embedding_w_q=embedding_w_q,multimodal_w=multimodal_w})
end
if iter%100 == 0 then
print('training loss: ' .. running_avg, 'on iter: ' .. iter .. '/' .. opt.max_iters)
end
optim.rmsprop(JdJ, optimize.winit, optimize, state)
optimize.learningRate=optimize.learningRate*decay_factor
if iter%50 == 0 then -- change this to smaller value if out of the memory
collectgarbage()
end
end
-- Saving the final model
torch.save(string.format(model_path..'lstm.t7',i),
{encoder_w_q=encoder_w_q,embedding_w_q=embedding_w_q,multimodal_w=multimodal_w})