-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathconfigs.py
executable file
·71 lines (51 loc) · 2.36 KB
/
configs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import os
import torch
class config:
# 'facebook/wav2vec2-large-xlsr-53'
# 'facebook/wav2vec2-base-960h'
model="facebook/wav2vec2-base-960h"
fast_LR=1e-3 #To be used when initial weights are frozen
LR=1e-4
clip_grad_norm=1.0
EPOCHS=1000
num_iters_checkpoint=57660
prev_checkpoint="./wandb/run-20210418_135042-2wfzsbrd/files/facebook/wav2vec2-base-960h_14"
output_directory="./model/"
os.makedirs(output_directory, exist_ok=True)
BATCH_SIZE=6
SHUFFLE=True
eval=True
train=True
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
max_audio_len=576000
freeze_for_epochs=0
transliterate=False
cur_epoch=0
#Support for additional languages
Telugu=(3072,3199+1)
Tamil=(2944,3071+1)
Odia=(2816,2943+1)
Gujarati=(2688,2815+1)
Hindi=(2304,2431+1)
Bengali=(2433,2554+1)
Marathi=Hindi
Language=[Hindi,Gujarati,Telugu,Tamil,Odia] #select the language (can add multiple languages to the list)
#Mono-Language Training
mono=True #to specify training for the monolingual language (to use mono dataset)
mono_train_path=["/home/krishnarajule3/ASR/data/Hindi/train","/home/krishnarajule3/ASR/data/Marathi/train","/home/krishnarajule3/ASR/data/Odia/train",
"/home/krishnarajule3/ASR/data/Gujarati/gu-in-Train","/home/krishnarajule3/ASR/data/Tamil/ta-in-Train","/home/krishnarajule3/ASR/data/Telegu/te-in-Train"
] #path to training folder
mono_test_path=["/home/krishnarajule3/ASR/data/Hindi/test","/home/krishnarajule3/ASR/data/Marathi/test","/home/krishnarajule3/ASR/data/Odia/test",
"/home/krishnarajule3/ASR/data/Gujarati/gu-in-Test","/home/krishnarajule3/ASR/data/Tamil/ta-in-Test","/home/krishnarajule3/ASR/data/Telegu/te-in-Train"
] #path to testing folder
#Code Switched Training (set mono=False, to use code-switched loader.py)
data_dir="/home/krishnarajule3/ASR/data/Hindi-English/"
data_loading_script="/home/datasets/code_switch_asr"
use_monolingual=False
monolingual_data_dir="/home/krishnarajule3/ASR/data/Hindi/"
def get_all_params_dict(config):
params = {}
for k, v in config.__dict__.items():
if not ( callable(v) or (k.startswith('__') and k.endswith('__'))):
params[k]=v
return params