-
Notifications
You must be signed in to change notification settings - Fork 22
/
mtcnn_detector.py
655 lines (529 loc) · 23.1 KB
/
mtcnn_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
# coding: utf-8
import os
import mxnet as mx
import numpy as np
import math
import cv2
from multiprocessing import Pool
from itertools import repeat
from itertools import izip
from helper import nms, adjust_input, generate_bbox, detect_first_stage_warpper
class MtcnnDetector(object):
"""
Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Neural Networks
see https://github.com/kpzhang93/MTCNN_face_detection_alignment
this is a mxnet version
"""
def __init__(self,
model_folder='.',
minsize = 20,
threshold = [0.6, 0.7, 0.8],
factor = 0.709,
num_worker = 1,
accurate_landmark = False,
ctx=mx.cpu()):
"""
Initialize the detector
Parameters:
----------
model_folder : string
path for the models
minsize : float number
minimal face to detect
threshold : float number
detect threshold for 3 stages
factor: float number
scale factor for image pyramid
num_worker: int number
number of processes we use for first stage
accurate_landmark: bool
use accurate landmark localization or not
"""
self.num_worker = num_worker
self.accurate_landmark = accurate_landmark
# load 4 models from folder
models = ['det1', 'det2', 'det3','det4']
models = [ os.path.join(model_folder, f) for f in models]
self.PNets = []
for i in range(num_worker):
workner_net = mx.model.FeedForward.load(models[0], 1, ctx=ctx)
self.PNets.append(workner_net)
#self.Pool = Pool(num_worker)
self.RNet = mx.model.FeedForward.load(models[1], 1, ctx=ctx)
self.ONet = mx.model.FeedForward.load(models[2], 1, ctx=ctx)
self.LNet = mx.model.FeedForward.load(models[3], 1, ctx=ctx)
self.minsize = float(minsize)
self.factor = float(factor)
self.threshold = threshold
def convert_to_square(self, bbox):
"""
convert bbox to square
Parameters:
----------
bbox: numpy array , shape n x 5
input bbox
Returns:
-------
square bbox
"""
square_bbox = bbox.copy()
h = bbox[:, 3] - bbox[:, 1] + 1
w = bbox[:, 2] - bbox[:, 0] + 1
max_side = np.maximum(h,w)
square_bbox[:, 0] = bbox[:, 0] + w*0.5 - max_side*0.5
square_bbox[:, 1] = bbox[:, 1] + h*0.5 - max_side*0.5
square_bbox[:, 2] = square_bbox[:, 0] + max_side - 1
square_bbox[:, 3] = square_bbox[:, 1] + max_side - 1
return square_bbox
def calibrate_box(self, bbox, reg):
"""
calibrate bboxes
Parameters:
----------
bbox: numpy array, shape n x 5
input bboxes
reg: numpy array, shape n x 4
bboxex adjustment
Returns:
-------
bboxes after refinement
"""
w = bbox[:, 2] - bbox[:, 0] + 1
w = np.expand_dims(w, 1)
h = bbox[:, 3] - bbox[:, 1] + 1
h = np.expand_dims(h, 1)
reg_m = np.hstack([w, h, w, h])
aug = reg_m * reg
bbox[:, 0:4] = bbox[:, 0:4] + aug
return bbox
def pad(self, bboxes, w, h):
"""
pad the the bboxes, alse restrict the size of it
Parameters:
----------
bboxes: numpy array, n x 5
input bboxes
w: float number
width of the input image
h: float number
height of the input image
Returns :
------s
dy, dx : numpy array, n x 1
start point of the bbox in target image
edy, edx : numpy array, n x 1
end point of the bbox in target image
y, x : numpy array, n x 1
start point of the bbox in original image
ex, ex : numpy array, n x 1
end point of the bbox in original image
tmph, tmpw: numpy array, n x 1
height and width of the bbox
"""
tmpw, tmph = bboxes[:, 2] - bboxes[:, 0] + 1, bboxes[:, 3] - bboxes[:, 1] + 1
num_box = bboxes.shape[0]
dx , dy= np.zeros((num_box, )), np.zeros((num_box, ))
edx, edy = tmpw.copy()-1, tmph.copy()-1
x, y, ex, ey = bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 3]
tmp_index = np.where(ex > w-1)
edx[tmp_index] = tmpw[tmp_index] + w - 2 - ex[tmp_index]
ex[tmp_index] = w - 1
tmp_index = np.where(ey > h-1)
edy[tmp_index] = tmph[tmp_index] + h - 2 - ey[tmp_index]
ey[tmp_index] = h - 1
tmp_index = np.where(x < 0)
dx[tmp_index] = 0 - x[tmp_index]
x[tmp_index] = 0
tmp_index = np.where(y < 0)
dy[tmp_index] = 0 - y[tmp_index]
y[tmp_index] = 0
return_list = [dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph]
return_list = [item.astype(np.int32) for item in return_list]
return return_list
def slice_index(self, number):
"""
slice the index into (n,n,m), m < n
Parameters:
----------
number: int number
number
"""
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
num_list = range(number)
return list(chunks(num_list, self.num_worker))
def detect_face_limited(self, img, det_type=2):
height, width, _ = img.shape
if det_type>=2:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 24, 24) is the input shape for RNet
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
output = self.RNet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[1][:, 1] > self.threshold[1])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
reg = output[0][passed]
# nms
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick]
total_boxes = self.calibrate_box(total_boxes, reg[pick])
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
else:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
num_box = total_boxes.shape[0]
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 48, 48) is the input shape for ONet
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
output = self.ONet.predict(input_buf)
#print(output[2])
# filter the total_boxes with threshold
passed = np.where(output[2][:, 1] > self.threshold[2])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
reg = output[1][passed]
points = output[0][passed]
# compute landmark points
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
# nms
total_boxes = self.calibrate_box(total_boxes, reg)
pick = nms(total_boxes, 0.7, 'Min')
total_boxes = total_boxes[pick]
points = points[pick]
if not self.accurate_landmark:
return total_boxes, points
#############################################
# extended stage
#############################################
num_box = total_boxes.shape[0]
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
patchw = np.round(patchw*0.25)
# make it even
patchw[np.where(np.mod(patchw,2) == 1)] += 1
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
for i in range(5):
x, y = points[:, i], points[:, i+5]
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
width,
height)
for j in range(num_box):
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
output = self.LNet.predict(input_buf)
pointx = np.zeros((num_box, 5))
pointy = np.zeros((num_box, 5))
for k in range(5):
# do not make a large movement
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
output[k][tmp_index[0]] = 0.5
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
points = np.hstack([pointx, pointy])
points = points.astype(np.int32)
return total_boxes, points
def detect_face(self, img, det_type=0):
"""
detect face over img
Parameters:
----------
img: numpy array, bgr order of shape (1, 3, n, m)
input image
Retures:
-------
bboxes: numpy array, n x 5 (x1,y2,x2,y2,score)
bboxes
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
landmarks
"""
# check input
height, width, _ = img.shape
if det_type==0:
MIN_DET_SIZE = 12
if img is None:
return None
# only works for color image
if len(img.shape) != 3:
return None
# detected boxes
total_boxes = []
minl = min( height, width)
# get all the valid scales
scales = []
m = MIN_DET_SIZE/self.minsize
minl *= m
factor_count = 0
while minl > MIN_DET_SIZE:
scales.append(m*self.factor**factor_count)
minl *= self.factor
factor_count += 1
#############################################
# first stage
#############################################
#for scale in scales:
# return_boxes = self.detect_first_stage(img, scale, 0)
# if return_boxes is not None:
# total_boxes.append(return_boxes)
sliced_index = self.slice_index(len(scales))
total_boxes = []
for batch in sliced_index:
#local_boxes = self.Pool.map( detect_first_stage_warpper, \
# izip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
local_boxes = map( detect_first_stage_warpper, \
izip(repeat(img), self.PNets[:len(batch)], [scales[i] for i in batch], repeat(self.threshold[0])) )
total_boxes.extend(local_boxes)
# remove the Nones
total_boxes = [ i for i in total_boxes if i is not None]
if len(total_boxes) == 0:
return None
total_boxes = np.vstack(total_boxes)
if total_boxes.size == 0:
return None
# merge the detection from first stage
pick = nms(total_boxes[:, 0:5], 0.7, 'Union')
total_boxes = total_boxes[pick]
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
# refine the bboxes
total_boxes = np.vstack([total_boxes[:, 0]+total_boxes[:, 5] * bbw,
total_boxes[:, 1]+total_boxes[:, 6] * bbh,
total_boxes[:, 2]+total_boxes[:, 7] * bbw,
total_boxes[:, 3]+total_boxes[:, 8] * bbh,
total_boxes[:, 4]
])
total_boxes = total_boxes.T
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
else:
total_boxes = np.array( [ [0.0, 0.0, img.shape[1], img.shape[0], 0.9] ] ,dtype=np.float32)
#############################################
# second stage
#############################################
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 24, 24) is the input shape for RNet
input_buf = np.zeros((num_box, 3, 24, 24), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.uint8)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (24, 24)))
output = self.RNet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[1][:, 1] > self.threshold[1])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[1][passed, 1].reshape((-1,))
reg = output[0][passed]
# nms
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick]
total_boxes = self.calibrate_box(total_boxes, reg[pick])
total_boxes = self.convert_to_square(total_boxes)
total_boxes[:, 0:4] = np.round(total_boxes[:, 0:4])
#############################################
# third stage
#############################################
num_box = total_boxes.shape[0]
# pad the bbox
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(total_boxes, width, height)
# (3, 48, 48) is the input shape for ONet
input_buf = np.zeros((num_box, 3, 48, 48), dtype=np.float32)
for i in range(num_box):
tmp = np.zeros((tmph[i], tmpw[i], 3), dtype=np.float32)
tmp[dy[i]:edy[i]+1, dx[i]:edx[i]+1, :] = img[y[i]:ey[i]+1, x[i]:ex[i]+1, :]
input_buf[i, :, :, :] = adjust_input(cv2.resize(tmp, (48, 48)))
output = self.ONet.predict(input_buf)
# filter the total_boxes with threshold
passed = np.where(output[2][:, 1] > self.threshold[2])
total_boxes = total_boxes[passed]
if total_boxes.size == 0:
return None
total_boxes[:, 4] = output[2][passed, 1].reshape((-1,))
reg = output[1][passed]
points = output[0][passed]
# compute landmark points
bbw = total_boxes[:, 2] - total_boxes[:, 0] + 1
bbh = total_boxes[:, 3] - total_boxes[:, 1] + 1
points[:, 0:5] = np.expand_dims(total_boxes[:, 0], 1) + np.expand_dims(bbw, 1) * points[:, 0:5]
points[:, 5:10] = np.expand_dims(total_boxes[:, 1], 1) + np.expand_dims(bbh, 1) * points[:, 5:10]
# nms
total_boxes = self.calibrate_box(total_boxes, reg)
pick = nms(total_boxes, 0.7, 'Min')
total_boxes = total_boxes[pick]
points = points[pick]
if not self.accurate_landmark:
return total_boxes, points
#############################################
# extended stage
#############################################
num_box = total_boxes.shape[0]
patchw = np.maximum(total_boxes[:, 2]-total_boxes[:, 0]+1, total_boxes[:, 3]-total_boxes[:, 1]+1)
patchw = np.round(patchw*0.25)
# make it even
patchw[np.where(np.mod(patchw,2) == 1)] += 1
input_buf = np.zeros((num_box, 15, 24, 24), dtype=np.float32)
for i in range(5):
x, y = points[:, i], points[:, i+5]
x, y = np.round(x-0.5*patchw), np.round(y-0.5*patchw)
[dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph] = self.pad(np.vstack([x, y, x+patchw-1, y+patchw-1]).T,
width,
height)
for j in range(num_box):
tmpim = np.zeros((tmpw[j], tmpw[j], 3), dtype=np.float32)
tmpim[dy[j]:edy[j]+1, dx[j]:edx[j]+1, :] = img[y[j]:ey[j]+1, x[j]:ex[j]+1, :]
input_buf[j, i*3:i*3+3, :, :] = adjust_input(cv2.resize(tmpim, (24, 24)))
output = self.LNet.predict(input_buf)
pointx = np.zeros((num_box, 5))
pointy = np.zeros((num_box, 5))
for k in range(5):
# do not make a large movement
tmp_index = np.where(np.abs(output[k]-0.5) > 0.35)
output[k][tmp_index[0]] = 0.5
pointx[:, k] = np.round(points[:, k] - 0.5*patchw) + output[k][:, 0]*patchw
pointy[:, k] = np.round(points[:, k+5] - 0.5*patchw) + output[k][:, 1]*patchw
points = np.hstack([pointx, pointy])
points = points.astype(np.int32)
return total_boxes, points
def list2colmatrix(self, pts_list):
"""
convert list to column matrix
Parameters:
----------
pts_list:
input list
Retures:
-------
colMat:
"""
assert len(pts_list) > 0
colMat = []
for i in range(len(pts_list)):
colMat.append(pts_list[i][0])
colMat.append(pts_list[i][1])
colMat = np.matrix(colMat).transpose()
return colMat
def find_tfrom_between_shapes(self, from_shape, to_shape):
"""
find transform between shapes
Parameters:
----------
from_shape:
to_shape:
Retures:
-------
tran_m:
tran_b:
"""
assert from_shape.shape[0] == to_shape.shape[0] and from_shape.shape[0] % 2 == 0
sigma_from = 0.0
sigma_to = 0.0
cov = np.matrix([[0.0, 0.0], [0.0, 0.0]])
# compute the mean and cov
from_shape_points = from_shape.reshape(from_shape.shape[0]/2, 2)
to_shape_points = to_shape.reshape(to_shape.shape[0]/2, 2)
mean_from = from_shape_points.mean(axis=0)
mean_to = to_shape_points.mean(axis=0)
for i in range(from_shape_points.shape[0]):
temp_dis = np.linalg.norm(from_shape_points[i] - mean_from)
sigma_from += temp_dis * temp_dis
temp_dis = np.linalg.norm(to_shape_points[i] - mean_to)
sigma_to += temp_dis * temp_dis
cov += (to_shape_points[i].transpose() - mean_to.transpose()) * (from_shape_points[i] - mean_from)
sigma_from = sigma_from / to_shape_points.shape[0]
sigma_to = sigma_to / to_shape_points.shape[0]
cov = cov / to_shape_points.shape[0]
# compute the affine matrix
s = np.matrix([[1.0, 0.0], [0.0, 1.0]])
u, d, vt = np.linalg.svd(cov)
if np.linalg.det(cov) < 0:
if d[1] < d[0]:
s[1, 1] = -1
else:
s[0, 0] = -1
r = u * s * vt
c = 1.0
if sigma_from != 0:
c = 1.0 / sigma_from * np.trace(np.diag(d) * s)
tran_b = mean_to.transpose() - c * r * mean_from.transpose()
tran_m = c * r
return tran_m, tran_b
def extract_image_chips(self, img, points, desired_size=256, padding=0):
"""
crop and align face
Parameters:
----------
img: numpy array, bgr order of shape (1, 3, n, m)
input image
points: numpy array, n x 10 (x1, x2 ... x5, y1, y2 ..y5)
desired_size: default 256
padding: default 0
Retures:
-------
crop_imgs: list, n
cropped and aligned faces
"""
crop_imgs = []
for p in points:
shape =[]
for k in range(len(p)/2):
shape.append(p[k])
shape.append(p[k+5])
if padding > 0:
padding = padding
else:
padding = 0
# average positions of face points
mean_face_shape_x = [0.224152, 0.75610125, 0.490127, 0.254149, 0.726104]
mean_face_shape_y = [0.2119465, 0.2119465, 0.628106, 0.780233, 0.780233]
from_points = []
to_points = []
for i in range(len(shape)/2):
x = (padding + mean_face_shape_x[i]) / (2 * padding + 1) * desired_size
y = (padding + mean_face_shape_y[i]) / (2 * padding + 1) * desired_size
to_points.append([x, y])
from_points.append([shape[2*i], shape[2*i+1]])
# convert the points to Mat
from_mat = self.list2colmatrix(from_points)
to_mat = self.list2colmatrix(to_points)
# compute the similar transfrom
tran_m, tran_b = self.find_tfrom_between_shapes(from_mat, to_mat)
probe_vec = np.matrix([1.0, 0.0]).transpose()
probe_vec = tran_m * probe_vec
scale = np.linalg.norm(probe_vec)
angle = 180.0 / math.pi * math.atan2(probe_vec[1, 0], probe_vec[0, 0])
from_center = [(shape[0]+shape[2])/2.0, (shape[1]+shape[3])/2.0]
to_center = [0, 0]
to_center[1] = desired_size * 0.4
to_center[0] = desired_size * 0.5
ex = to_center[0] - from_center[0]
ey = to_center[1] - from_center[1]
rot_mat = cv2.getRotationMatrix2D((from_center[0], from_center[1]), -1*angle, scale)
rot_mat[0][2] += ex
rot_mat[1][2] += ey
chips = cv2.warpAffine(img, rot_mat, (desired_size, desired_size))
crop_imgs.append(chips)
return crop_imgs