@@ -9,6 +9,10 @@ torch >= 1.6.0
99```
1010
1111## Train on a single node
12+ If you want to use 8 GPU to train, you should set ` --nproc_per_node=8 ` and set ` CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 `
13+ If you want to use 4 GPU to train, you should set ` --nproc_per_node=4 ` and set ` CUDA_VISIBLE_DEVICES=0,1,2,3 `
14+ If you want to use 1 GPU to train, you should set ` --nproc_per_node=1 ` ...
15+
1216``` shell
1317export OMP_NUM_THREADS=4
1418export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
@@ -42,39 +46,26 @@ CUDA_VISIBLE_DEVICES=0,1 python eval_ijbc.py \
4246More details see [ eval.md] ( docs/eval.md ) in docs.
4347
4448
45- ## Model Zoo
46- ### MS1MV3
47- | Datasets | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30| cfp_fp| lfw |
48- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
49- | MS1MV3-Arcface | r18 | 92.08 | 94.68 | 97.65 | 97.63 | 99.73|
50- | MS1MV3-Arcface | r34 | | | | | |
51- | MS1MV3-Arcface | r50 | 94.79 | 96.43 | 98.28 | 98.89 | 99.85|
52- | MS1MV3-Arcface | r50-amp | 94.72 | 96.41 | 98.30 | 99.06 | 99.85|
53- | MS1MV3-Arcface | r100 | 95.22 | 96.87 | 98.45 | 99.19 | 99.85|
54-
55- ### Glint360k
56- | Datasets | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30| cfp_fp| lfw |
57- | :---: | :--- | :--- | :--- | :--- | :--- | :--- |
58- | Glint360k-Cosface | r100 | 96.19 | 97.39 | 98.52 | 99.26 | 99.83|
49+ ## Model Zoo
5950
60- More details see [ eval.md ] ( docs/modelzoo.md ) in docs .
51+ The models are available for non-commercial research purposes only .
6152
53+ All Model Can be found in here.
54+ [ Baidu Yun Pan] ( https://pan.baidu.com/s/1CL-l4zWqsI1oDuEEYVhj-g ) : e8pw
6255
56+ ### MS1MV3
57+ | Datasets | log | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30| cfp_fp| lfw |
58+ | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
59+ | MS1MV3-Arcface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r18/training.log ) | r18 | 92.08 | 94.68 | 97.65 | 97.63 | 99.73 |
60+ | MS1MV3-Arcface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r34/training.log ) | r34 | 94.13 | 95.98 | 98.05 | 98.60 | 99.80 |
61+ | MS1MV3-Arcface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r50/training.log ) | r50 | 94.79 | 96.43 | 98.28 | 98.89 | 99.85 |
62+ | MS1MV3-Arcface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r50_fp16/training.log ) | r50-fp16 | 94.72 | 96.41 | 98.30 | 99.06 | 99.85 |
63+ | MS1MV3-Arcface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_arcface_r100/training.log ) | r100 | 95.22 | 96.87 | 98.45 | 99.19 | 99.85 |
64+
65+ ### Glint360k
66+ | Datasets | log | backbone | IJBC(1e-05) | IJBC(1e-04) | agedb30| cfp_fp| lfw |
67+ | :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
68+ | Glint360k-Cosface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r100/training.log ) | r100 | 96.19 | 97.39 | 98.52 | 99.26 | 99.83 |
69+ | Glint360k-Cosface | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_cosface_r100_fp16_0.1/training.log ) | r100-fp16-sample-0.1 | 95.95 | 97.35 | 98.57 | 99.30 | 99.85 |
6370
64- ## Citation
65- ```
66- @inproceedings{deng2019arcface,
67- title={Arcface: Additive angular margin loss for deep face recognition},
68- author={Deng, Jiankang and Guo, Jia and Xue, Niannan and Zafeiriou, Stefanos},
69- booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
70- pages={4690--4699},
71- year={2019}
72- }
73- @inproceedings{an2020partical_fc,
74- title={Partial FC: Training 10 Million Identities on a Single Machine},
75- author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
76- Zhang, Debing and Fu Ying},
77- booktitle={Arxiv 2010.05222},
78- year={2020}
79- }
80- ```
71+ More details see [ eval.md] ( docs/modelzoo.md ) in docs.
0 commit comments