@@ -5,9 +5,9 @@ identity on a single server.
55
66## Requirements
77
8- - Install [ PyTorch] ( http://pytorch.org ) (torch>=1.6 .0), our doc for [ install.md] ( docs/install.md ) .
8+ - Install [ PyTorch] ( http://pytorch.org ) (torch>=1.9 .0), our doc for [ install.md] ( docs/install.md ) .
99- (Optional) Install [ DALI] ( https://docs.nvidia.com/deeplearning/dali/user-guide/docs/ ) , our doc for [ install_dali.md] ( docs/install_dali.md ) .
10- - ` pip install -r requirement .txt ` .
10+ - ` pip install -r requirements .txt ` .
1111
1212## How to Training
1313
@@ -58,26 +58,55 @@ For **ICCV2021-MFR-ALL** set, TAR is measured on all-to-all 1:1 protocal, with F
5858globalised multi-racial testset contains 242,143 identities and 1,624,305 images.
5959
6060
61+ > 1 . Large Scale Datasets
62+
63+ | Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
64+ | :-----------------| :------------| :------------| :------------| :------------| :--------------------| :------------------------------------------------------------------------------------------------------------------------------------------------|
65+ | MS1MV3 | mobileface | 65.76 | 94.44 | 91.85 | ~ 13000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mobileface_lr02/training.log ) |
66+ | Glint360K | mobileface | 69.83 | 95.17 | 92.58 | -11000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mobileface_lr02_bs4k/training.log ) |
67+ | WF42M-PFC-0.2 | mobileface | 73.80 | 95.40 | 92.64 | (16GPUs)~ 18583 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_mobilefacenet_pfc02_bs8k_16gpus/training.log ) |
68+ | MS1MV3 | r100 | 83.23 | 96.88 | 95.31 | ~ 3400 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100_lr02/training.log ) |
69+ | Glint360K | r100 | 90.86 | 97.53 | 96.43 | ~ 5000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100_lr02_bs4k_16gpus/training.log ) |
70+ | WF42M-PFC-0.2 | r50(bs4k) | 93.83 | 97.53 | 96.16 | (8 GPUs)~ 5900 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log ) |
71+ | WF42M-PFC-0.2 | r50(bs8k) | 93.96 | 97.46 | 96.12 | (16GPUs)~ 11000 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log ) |
72+ | WF42M-PFC-0.2 | r50(bs4k) | 94.04 | 97.48 | 95.94 | (32GPUs)~ 17000 | click me |
73+ | WF42M-PFC-0.0018 | r100(bs16k) | 93.08 | 97.51 | 95.88 | (32GPUs)~ 10000 | click me |
74+ | WF42M-PFC-0.2 | r100(bs4k) | 96.69 | 97.85 | 96.63 | (16GPUs)~ 5200 | [ click me] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log ) |
75+
76+ > 2 . VIT For Face Recognition
77+
78+ | Datasets | Backbone | FLOPs | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
79+ | :--------------| :-------------| :------| :------------| :------------| :------------| :--------------------| :---------|
80+ | WF42M-PFC-0.3 | R18(bs4k) | 2.6 | 79.13 | 95.77 | 93.36 | - | click me |
81+ | WF42M-PFC-0.3 | R50(bs4k) | 6.3 | 94.03 | 97.48 | 95.94 | - | click me |
82+ | WF42M-PFC-0.3 | R100(bs4k) | 12.1 | 96.69 | 97.82 | 96.45 | - | click me |
83+ | WF42M-PFC-0.3 | R200(bs4k) | 23.5 | 97.70 | 97.97 | 96.93 | - | click me |
84+ | WF42M-PFC-0.3 | VIT-T(bs24k) | 1.5 | 92.24 | 97.31 | 95.97 | (64GPUs)~ 35000 | click me |
85+ | WF42M-PFC-0.3 | VIT-S(bs24k) | 5.7 | 95.87 | 97.73 | 96.57 | (64GPUs)~ 25000 | click me |
86+ | WF42M-PFC-0.3 | VIT-B(bs24k) | 11.4 | 97.42 | 97.90 | 97.04 | (64GPUs)~ 13800 | click me |
87+ | WF42M-PFC-0.3 | VIT-L(bs24k) | 25.3 | 97.85 | 98.00 | 97.23 | (64GPUs)~ 9406 | click me |
88+
89+ WF42M means WebFace42M, ` PFC-0.3 ` means negivate class centers sample rate is 0.3.
90+
91+ > 3 . Noisy Datasets
92+
93+ | Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | log |
94+ | :-------------------------| :---------| :------------| :------------| :------------| :---------|
95+ | WF12M-Flip(40%) | R50 | 43.87 | 88.35 | 80.78 | click me |
96+ | WF12M-Flip(40%)-PFC-0.3* | R50 | 80.20 | 96.11 | 93.79 | click me |
97+ | WF12M-Conflict | R50 | 79.93 | 95.30 | 91.56 | click me |
98+ | WF12M-Conflict-PFC-0.3* | R50 | 91.68 | 97.28 | 95.75 | click me |
99+
100+ WF12M means WebFace12M, ` +PFC-0.3* ` denotes additional abnormal inter-class filtering.
61101
62- | Datasets | Backbone | ** MFR-ALL** | IJB-C(1E-4) | IJB-C(1E-5) | Training Throughout | log |
63- | :-------------------------| :-----------| :------------| :------------| :------------| :--------------------| :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
64- | MS1MV3 | mobileface | 65.76 | 94.44 | 91.85 | ~ 13000 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_mobileface_lr02/training.log ) \| [ config] ( configs/ms1mv3_mobileface_lr02.py ) |
65- | Glint360K | mobileface | 69.83 | 95.17 | 92.58 | -11000 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_mobileface_lr02_bs4k/training.log ) \| [ config] ( configs/glint360k_mobileface_lr02_bs4k.py ) |
66- | WebFace42M-PartialFC-0.2 | mobileface | 73.80 | 95.40 | 92.64 | (16GPUs)~ 18583 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_mobilefacenet_pfc02_bs8k_16gpus/training.log ) \| [ config] ( configs/webface42m_mobilefacenet_pfc02_bs8k_16gpus.py ) |
67- | MS1MV3 | r100 | 83.23 | 96.88 | 95.31 | ~ 3400 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/ms1mv3_r100_lr02/training.log ) \| [ config] ( configs/ms1mv3_r100_lr02.py ) |
68- | Glint360K | r100 | 90.86 | 97.53 | 96.43 | ~ 5000 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/glint360k_r100_lr02_bs4k_16gpus/training.log ) \| [ config] ( configs/glint360k_r100_lr02_bs4k_16gpus.py ) |
69- | WebFace42M-PartialFC-0.2 | r50(bs4k) | 93.83 | 97.53 | 96.16 | (8 GPUs)~ 5900 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_bs4k_pfc02/training.log ) \| [ config] ( configs/webface42m_r50_lr01_pfc02_bs4k_8gpus.py ) |
70- | WebFace42M-PartialFC-0.2 | r50(bs8k) | 93.96 | 97.46 | 96.12 | (16GPUs)~ 11000 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r50_lr01_pfc02_bs8k_16gpus/training.log ) \| [ config] ( configs/webface42m_r50_lr01_pfc02_bs8k_16gpus.py ) |
71- | WebFace42M-PartialFC-0.2 | r50(bs4k) | 94.04 | 97.48 | 95.94 | (32GPUs)~ 17000 | log\| [ config] ( configs/webface42m_r50_lr01_pfc02_bs4k_32gpus.py ) |
72- | WebFace42M-PartialFC-0.2 | r100(bs4k) | 96.69 | 97.85 | 96.63 | (16GPUs)~ 5200 | [ log] ( https://raw.githubusercontent.com/anxiangsir/insightface_arcface_log/master/webface42m_r100_bs4k_pfc02/training.log ) \| [ config] ( configs/webface42m_r100_lr01_pfc02_bs4k_16gpus.py ) |
73- | WebFace42M-PartialFC-0.2 | r200 | - | - | - | - | log\| config |
74102
75- ` PartialFC-0.2 ` means negivate class centers sample rate is 0.2.
76103
77104
78105## Speed Benchmark
106+ <div ><img src =" https://github.com/anxiangsir/insightface_arcface_log/blob/master/pfc_exp.png " width = " 90% " /></div >
107+
79108
80- ` arcface_torch ` can train large-scale face recognition training set efficiently and quickly. When the number of
109+ ** Arcface-Torch ** can train large-scale face recognition training set efficiently and quickly. When the number of
81110classes in training sets is greater than 1 Million, partial fc sampling strategy will get same
82111accuracy with several times faster training performance and smaller GPU memory.
83112Partial FC is a sparse variant of the model parallel architecture for large sacle face recognition. Partial FC use a
@@ -86,12 +115,12 @@ sparse part of the parameters will be updated, which can reduce a lot of GPU mem
86115we can scale trainset of 29 millions identities, the largest to date. Partial FC also supports multi-machine distributed
87116training and mixed precision training.
88117
89- ![ Image text ] ( https://github.com/anxiangsir/insightface_arcface_log/blob/master/partial_fc_v2.png )
118+
90119
91120More details see
92121[ speed_benchmark.md] ( docs/speed_benchmark.md ) in docs.
93122
94- ### 1. Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)
123+ > 1 . Training speed of different parallel methods (samples / second), Tesla V100 32GB * 8. (Larger is better)
95124
96125` - ` means training failed because of gpu memory limitations.
97126
@@ -104,7 +133,7 @@ More details see
104133| 16000000 | ** -** | ** -** | 2679 |
105134| 29000000 | ** -** | ** -** | ** 1855** |
106135
107- ### 2. GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)
136+ > 2 . GPU memory cost of different parallel methods (MB per GPU), Tesla V100 32GB * 8. (Smaller is better)
108137
109138| Number of Identities in Dataset | Data Parallel | Model Parallel | Partial FC 0.1 |
110139| :--------------------------------| :--------------| :---------------| :---------------|
@@ -126,11 +155,18 @@ More details see
126155 pages={4690--4699},
127156 year={2019}
128157}
158+ @inproceedings{an2022pfc,
159+ title={Killing Two Birds with One Stone: Efficient and Robust Training of Face Recognition CNNs by Partial FC},
160+ author={An, Xiang and Deng, Jiangkang and Guo, Jia and Feng, Ziyong and Zhu, Xuhan and Jing, Yang and Tongliang, Liu},
161+ booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
162+ year={2022}
163+ }
129164@inproceedings{an2020partical_fc,
130165 title={Partial FC: Training 10 Million Identities on a Single Machine},
131166 author={An, Xiang and Zhu, Xuhan and Xiao, Yang and Wu, Lan and Zhang, Ming and Gao, Yuan and Qin, Bin and
132167 Zhang, Debing and Fu Ying},
133- booktitle={Arxiv 2010.05222},
168+ booktitle={Proceedings of International Conference on Computer Vision Workshop},
169+ pages={1445-1449},
134170 year={2020}
135171}
136172```
0 commit comments