diff --git a/Chapter1.pdf b/Chapter1.pdf index 0e59e35..5af23ae 100755 Binary files a/Chapter1.pdf and b/Chapter1.pdf differ diff --git a/Chapter1.tex b/Chapter1.tex index 0026e1d..a5e0a7e 100644 --- a/Chapter1.tex +++ b/Chapter1.tex @@ -19,15 +19,27 @@ \ex{1.3} Consider a simple series resistor circuit. \begin{circuit}{fig:1.3.1}{A basic series circuit.} - (0,0) to[V=$V_\in$] (4,0) - to (4,2) - to[R=$R_2$] (2,2) - to[R=$R_1$] (0,2) + (0,0) to[V=$V$,invert] (0,4) + to[short,i=$I$] (2,4) + to[R=$R_1$,v=$V_{1}$] (2,2) + to[R=$R_2$,v=$V_{2}$] (2,0) to (0,0) \end{circuit} - By - \todo{Solve this problem} - + By LVK and Ohm's law \[ V = V_{1} + V_{2} = R_{1}\cdot I + R_{2} \cdot I = (R_{1}+R_{2}) \cdot I = R \cdot I \] + where \[\mans{R = R_{1} + R_{2}}\] is the resistance of $R_{1}$ and $R_{2}$ in series. Now, consider a simple parallel resistor circuit. + + \begin{circuit}{fig:1.3.2}{A basic parallel circuit.} + (0,0) to[V=$V$,invert] (0,3) + to[short,i=$I$] (2,3) + to[R=$R_1$,i>^=$I_{1}$] (2,0); + \draw (2,3) to[short] (4,3) + to[R=$R_2$,i>^=$I_{2}$] (4,0) + to (0,0) + \end{circuit} + By LCK and Ohm's law \[ I = I_{1} + I_{2} = \frac{V}{R_{1}} + \frac{V}{R_{2}} = \left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)\cdot V \] + solving for V as a function of I we get + \[V = \dfrac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}}\cdot I = \frac{R_{1}R_{2}}{R_{1}+R_{2}}\cdot I = R\cdot I \] + where \[\mans{R = \dfrac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}} = \frac{R_{1}R_{2}}{R_{1}+R_{2}}}\] is the resistance of $R_{1}$ and $R_{2}$ in parallel. \ex{1.4} \todo{Solve this problem}