Let's call an array arr
a mountain if the following properties hold:
arr.length >= 3
- There exists some
i
with0 < i < arr.length - 1
such that:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
Given an integer array arr
that is guaranteed to be a mountain, return any i
such that arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
.
Example 1:
Input: arr = [0,1,0] Output: 1
Example 2:
Input: arr = [0,2,1,0] Output: 1
Example 3:
Input: arr = [0,10,5,2] Output: 1
Example 4:
Input: arr = [3,4,5,1] Output: 2
Example 5:
Input: arr = [24,69,100,99,79,78,67,36,26,19] Output: 2
Constraints:
3 <= arr.length <= 104
0 <= arr[i] <= 106
arr
is guaranteed to be a mountain array.
Follow up: Finding the
O(n)
is straightforward, could you find an O(log(n))
solution?
Binary search.
class Solution:
def peakIndexInMountainArray(self, arr: List[int]) -> int:
n = len(arr)
left, right = 1, n - 2
while left < right:
mid = (left + right) // 2
if arr[mid] < arr[mid + 1]:
left = mid + 1
else:
right = mid
return right
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int n = arr.length;
int left = 1, right = n - 2;
while (left < right) {
int mid = left + (right - left) / 2;
if (arr[mid] < arr[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
}
func peakIndexInMountainArray(arr []int) int {
n := len(arr)
left, right := 1, n-2
for left < right {
mid := left + (right-left)/2
if arr[mid] < arr[mid+1] {
left = mid + 1
} else {
right = mid
}
}
return right
}
class Solution {
public:
int peakIndexInMountainArray(vector<int>& arr) {
int left = 1, right = arr.size() - 2;
while (left < right) {
int mid = left + right >> 1;
if (arr[mid] < arr[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return right;
}
};
/**
* @param {number[]} arr
* @return {number}
*/
var peakIndexInMountainArray = function(arr) {
let left = 1;
let right = arr.length - 2;
while (left < right) {
const mid = (left + right) >> 1;
if (arr[mid] < arr[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
};