Given the root
of a binary search tree, and an integer k
, return the kth
(1-indexed) smallest element in the tree.
Example 1:
Input: root = [3,1,4,null,2], k = 1 Output: 1
Example 2:
Input: root = [5,3,6,2,4,null,null,1], k = 3 Output: 3
Constraints:
- The number of nodes in the tree is
n
. 1 <= k <= n <= 104
0 <= Node.val <= 104
Follow up: If the BST is modified often (i.e., we can do insert and delete operations) and you need to find the kth smallest frequently, how would you optimize?
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def kthSmallest(self, root: TreeNode, k: int) -> int:
def inorder(root):
if root is None:
return
inorder(root.left)
self.k -= 1
if self.k == 0:
self.res = root.val
return
inorder(root.right)
self.k = k
inorder(root)
return self.res
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
private int k;
private int res;
public int kthSmallest(TreeNode root, int k) {
this.k = k;
inorder(root);
return res;
}
private void inorder(TreeNode root) {
if (root == null) {
return;
}
inorder(root.left);
if (--k == 0) {
res = root.val;
return;
}
inorder(root.right);
}
}