-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfinetune.py
293 lines (229 loc) · 10.4 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import os
import sys
import csv
import torch
import random
import logging
import numpy as np
from torch import nn
from torch.utils.data import DataLoader
from visdial.model import get_model
from visdial.data.dataset import VisDialDataset
from visdial.metrics import SparseGTMetrics, NDCG
from visdial.utils.checkpointing import CheckpointManager
from visdial.utils import move_to_cuda
from torch.utils.tensorboard import SummaryWriter
from visdial.optim import Adam, LRScheduler
from visdial.loss import FinetuneLoss
import argparse
from tqdm import tqdm
import itertools
# Load config
parser = argparse.ArgumentParser()
parser.add_argument('--model_path', default='checkpoints/model_v1.pth')
parser.add_argument('--save_path', default='checkpoints/finetune')
parser.add_argument('--num_epochs', type=int, default=2)
parser.add_argument('--init_lr', type=float, default=1e-4)
parser.add_argument('--scheduler_type', type=str, default='CosineLR')
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--overfit', action="store_true", default=False)
args = parser.parse_args()
config_path = os.path.expanduser(args.cpath)
model = torch.load(args.model_path)
config = model.encoder.config
config['dataset']['train_json_dense_dialog_path'] = 'datasets/annotations/visdial_1.0_train_dense_sample.json'
config['dataset']['overfit'] = args.overfit
config['dataset']['finetune'] = True
config['dataset']['evaluate'] = False
config['solver']['num_epochs'] = args.num_epochs
# For reproducibility
seed = config['seed']
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
os.environ['PYTHONHASHSEED'] = str(seed)
# datasets
print(f"CUDA number: {torch.cuda.device_count()}")
"""DATASET INIT"""
print("Loading dataset...")
val_dataset = VisDialDataset(config, split='val')
val_dataloader = DataLoader(val_dataset,
batch_size=args.batch_size,
num_workers=config['solver']['cpu_workers'],
shuffle=True)
if config['dataset']['overfit']:
train_dataset = val_dataset
train_dataloader = val_dataloader
train_dataset = VisDialDataset(config, split='train')
train_dataloader = DataLoader(train_dataset,
batch_size=args.batch_size,
num_workers=config['solver']['cpu_workers'],
shuffle=True)
eval_dataset = VisDialDataset(config, split='val')
eval_dataloader = DataLoader(eval_dataset,
batch_size=2,
num_workers=config['solver']['cpu_workers'])
"""MODEL INIT"""
print("Move model to GPU...")
device = torch.device('cuda')
model = model.to(device)
"""LOSS FUNCTION"""
disc_criterion = FinetuneLoss()
"""OPTIMIZER"""
optimizer = Adam(model.parameters(), lr=2e-5)
init_lr = args.init_lr
scheduler_type = args.scheduler_type
num_epochs = args.num_epochs
lr_scheduler = LRScheduler(optimizer,
batch_size=args.batch_size,
num_samples=2064 + 2000,
num_epochs=args.num_epochs,
min_lr=1e-5,
init_lr=args.init_lr,
warmup_epochs=1,
scheduler_type=args.scheduler_type,
milestone_steps=config['solver']['milestone_steps'],
linear_gama=config['solver']['linear_gama']
)
# =============================================================================
# SETUP BEFORE TRAINING LOOP
# =============================================================================
save_path = args.save_path
if not os.path.exists(save_path):
os.makedirs(save_path)
print(save_path)
summary_writer = SummaryWriter(log_dir=save_path)
checkpoint_manager = CheckpointManager(model, optimizer, save_path, config=config)
sparse_metrics = SparseGTMetrics()
disc_metrics = SparseGTMetrics()
gen_metrics = SparseGTMetrics()
ndcg = NDCG()
disc_ndcg = NDCG()
gen_ndcg = NDCG()
if torch.cuda.device_count() > 1:
print("NUMBER OF CUDA", torch.cuda.device_count())
model = nn.DataParallel(model)
# =============================================================================
# TRAINING LOOP
# =============================================================================
config["solver"]["training_splits"] = 'trainval'
start_epoch = 0
if config["solver"]["training_splits"] == "trainval":
iterations = (len(train_dataset) + len(val_dataset)) // (
args.batch_size) + 1
num_examples = torch.tensor(len(train_dataset) + len(val_dataset), dtype=torch.float)
else:
iterations = len(train_dataset) // (args.batch_size) + 1
num_examples = torch.tensor(len(train_dataset), dtype=torch.float)
global_iteration_step = start_epoch * iterations
for epoch in range(start_epoch, config['solver']['num_epochs']):
print(f"Training for epoch {epoch}:")
if epoch == 6:
break
with tqdm(total=iterations) as pbar:
if config["solver"]["training_splits"] == "trainval":
combined_dataloader = itertools.chain(train_dataloader, val_dataloader)
else:
combined_dataloader = itertools.chain(train_dataloader)
epoch_loss = torch.tensor(0.0)
for i, batch in enumerate(combined_dataloader):
batch = move_to_cuda(batch, device)
# zero out gradients
lr = lr_scheduler.step(global_iteration_step)
optimizer.zero_grad()
# do forward
out = model(batch)
# compute loss
batch_loss = torch.tensor(0.0, requires_grad=True, device='cuda')
if out.get('opt_scores') is not None:
scores = out['opt_scores']
sparse_metrics.observe(out['opt_scores'], batch['ans_ind'])
batch_loss = disc_criterion(scores, batch)
# compute gradients
batch_loss.backward()
# update params
optimizer.step()
pbar.update(1)
pbar.set_postfix(epoch=epoch,
batch_loss=batch_loss.item())
# log metrics
summary_writer.add_scalar(f'{config["config_name"]}-train/batch_loss',
batch_loss.item(), global_iteration_step)
# experiment.log_metric('train/lr', lr)
summary_writer.add_scalar("train/batch_lr", lr, global_iteration_step)
global_iteration_step += 1
torch.cuda.empty_cache()
epoch_loss += batch["ans"].size(0) * batch_loss.detach()
if out.get('opt_scores') is not None:
avg_metric_dict = {}
avg_metric_dict.update(sparse_metrics.retrieve(reset=True))
for metric_name, metric_value in avg_metric_dict.items():
print(f"{metric_name}: {metric_value}")
summary_writer.add_scalars(f"{config['config_name']}-train/metrics",
avg_metric_dict, global_iteration_step)
epoch_loss /= num_examples
print(f"train/epoch_loss: {epoch_loss.item()}\n")
summary_writer.add_scalar(f'{config["config_name"]}-train/epoch_loss',
epoch_loss.item(), global_iteration_step)
# -------------------------------------------------------------------------
# ON EPOCH END (checkpointing and validation)
# -------------------------------------------------------------------------
# Validate and report automatic metrics.
if True:
# Switch dropout, batchnorm etc to the correct mode.
model.eval()
print(f"\nValidation after epoch {epoch}:")
for batch in tqdm(eval_dataloader):
torch.cuda.empty_cache()
move_to_cuda(batch, device)
with torch.no_grad():
out = model(batch)
if out.get('opt_scores') is not None:
scores = out['opt_scores']
disc_metrics.observe(scores, batch["ans_ind"])
if "gt_relevance" in batch:
scores = scores[
torch.arange(scores.size(0)),
batch["round_id"] - 1, :]
disc_ndcg.observe(scores, batch["gt_relevance"])
if out.get('opts_out_scores') is not None:
scores = out['opts_out_scores']
gen_metrics.observe(scores, batch["ans_ind"])
if "gt_relevance" in batch:
scores = scores[
torch.arange(scores.size(0)),
batch["round_id"] - 1, :]
gen_ndcg.observe(scores, batch["gt_relevance"])
if out.get('opt_scores') is not None and out.get('opts_out_scores') is not None:
scores = (out['opts_out_scores'] + out['opt_scores']) / 2
sparse_metrics.observe(scores, batch["ans_ind"])
if "gt_relevance" in batch:
scores = scores[
torch.arange(scores.size(0)),
batch["round_id"] - 1, :]
ndcg.observe(scores, batch["gt_relevance"])
avg_metric_dict = {}
avg_metric_dict.update(sparse_metrics.retrieve(reset=True, key='avg_'))
avg_metric_dict.update(ndcg.retrieve(reset=True, key='avg_'))
disc_metric_dict = {}
disc_metric_dict.update(disc_metrics.retrieve(reset=True, key='disc_'))
disc_metric_dict.update(disc_ndcg.retrieve(reset=True, key='disc_'))
gen_metric_dict = {}
gen_metric_dict.update(gen_metrics.retrieve(reset=True, key='gen_'))
gen_metric_dict.update(gen_ndcg.retrieve(reset=True, key='gen_'))
for metric_dict in [avg_metric_dict, disc_metric_dict, gen_metric_dict]:
for metric_name, metric_value in metric_dict.items():
print(f"{metric_name}: {metric_value}")
summary_writer.add_scalars(f"{config['config_name']}-val/metrics",
metric_dict, global_iteration_step)
model.train()
torch.cuda.empty_cache()
# Checkpoint
checkpoint_manager.step(epoch=epoch, only_best=False,
metrics=disc_metric_dict, key='disc_')
if epoch == 5:
break