@@ -21421,9 +21421,6 @@ \subsection{Subtypes}
2142121421\newcommand{\SrnRightTop}{2}
2142221422\newcommand{\SrnLeftTop}{3}
2142321423\newcommand{\SrnBottom}{4}
21424- %\newcommand{\SrnRightObjectOne}{} Redundant
21425- %\newcommand{\SrnRightObjectTwo}{} Redundant
21426- %\newcommand{\SrnRightObjectThree}{} Redundant
2142721424\newcommand{\SrnRightObjectFour}{5}
2142821425\newcommand{\SrnNullOne}{6}
2142921426\newcommand{\SrnNullTwo}{7}
@@ -22034,7 +22031,8 @@ \subsection{Type Nullability}
2203422031Nullable types are types which are
2203522032definitively known to include the null object,
2203622033regardless of the value of any type variables.
22037- This is equivalent to the syntactic criterion that $T$ is any of:
22034+ If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22035+ then this is equivalent to the syntactic criterion that $T'$ is any of:
2203822036
2203922037\begin{itemize}[itemsep=-0.5ex]
2204022038\item \VOID.
@@ -22056,7 +22054,8 @@ \subsection{Type Nullability}
2205622054Non-nullable types are types which are definitively known to
2205722055\emph{not} include the null object,
2205822056regardless of the value of any type variables.
22059- This is equivalent to the syntactic criterion that $T$ is any of:
22057+ If $T'$ is the transitive alias expansion (\ref{typedef}) of $T$
22058+ then this is equivalent to the syntactic criterion that $T$ is any of:
2206022059
2206122060\begin{itemize}[itemsep=-0.5ex]
2206222061\item \code{Never}.
@@ -22423,21 +22422,23 @@ \subsection{Type Normalization}
2242322422
2242422423 \noindent
2242522424 then $T_r$ is
22426- \FunctionTypePositional{R_0 }{ }{X}{B}{s}{R }{n}{k}
22425+ \FunctionTypePositional{T'\!_0 }{ }{X}{B'\! }{s}{T'\! }{n}{k}
2242722426
2242822427 \noindent
22429- where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22428+ where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22429+ and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 1 .. s$.
2243022430\item If $T_u$ is of the form
2243122431 \FunctionTypeNamedStd{T_0}
2243222432
2243322433 \noindent
2243422434 where $r_j$ is either \REQUIRED{} or empty
2243522435 then $T_r$ is
2243622436 \noindent
22437- \FunctionTypeNamed{R_0 }{ }{X}{B}{s}{R }{n}{x}{k}{r }
22437+ \FunctionTypeNamed{T'\!_0 }{ }{X}{B'\! }{s}{T'\! }{n}{x}{k}
2243822438
2243922439 \noindent
22440- where $R_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$.
22440+ where $T'\!_i$ is \NormalizedTypeOf{$T_i$} for $i \in 0 .. n+k$
22441+ and $B'\!_i$ is \NormalizedTypeOf{$B_i$} for $i \in 0 .. s$.
2244122442\end{itemize}
2244222443
2244322444\commentary{%
@@ -22775,8 +22776,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2277522776which is defined as follows.
2277622777Assume that $P_1$ and $P_2$ are two formal parameter type declarations
2277722778with declared type $T_1$ respectively $T_2$,
22778- such that both are positional or both are named ,
22779- with the same name \DefineSymbol{n}.
22779+ such that both are positional,
22780+ or both are named and have the same name \DefineSymbol{n}.
2278022781Then \UpperBoundType{$P_1$}{$P_2$} (respectively \LowerBoundType{$P_1$}{$P_2$})
2278122782is the formal parameter declaration $P$,
2278222783with the following proporties:
@@ -22795,7 +22796,8 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2279522796 }
2279622797\item
2279722798 $P$ is named if $P_1$ and $P_2$ are named.
22798- In this case, the name of $P$ is $n$.
22799+ In this case, the name of $P$ is $n$
22800+ (\commentary{which is also the name of $P_1$ and $P_2$}).
2279922801 $P$ is marked with the modifier \REQUIRED{}
2280022802 if both $P_1$ and $P_2$ have this modifier
2280122803 (respectively, if either $P_1$ or $P_2$ has this modifier).
@@ -22974,22 +22976,25 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2297422976
2297522977 \noindent
2297622978 \code{$T_1$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{11}$,\,\ldots,\,$X_m$\,%
22977- \EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots,\ ,$P_{1k}$)}
22979+ \EXTENDS\,$B_{1m}$>($P_{11}$,\,\ldots[\ldots\ ,$P_{1k}$] )}
2297822980
2297922981 \noindent
2298022982 \code{$T_2$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{21}$,\,\ldots,\,$X_m$\,%
22981- \EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots,\ ,$P_{2l}$)}
22983+ \EXTENDS\,$B_{2m}$>($P_{21}$,\,\ldots[\ldots\ ,$P_{2l}$] )}
2298222984
2298322985 \noindent
2298422986 such that each $B_{1i}$ and $B_{2i}$ are types with the same canonical syntax,
22985- and both have the same number of required positional parameters.
22987+ and both $U_1$ or $U_2$ have
22988+ the same number of required positional parameters.
22989+ In the case where $U_1$ or $U_2$ has no optional positional parameters,
22990+ the brackets are omitted.
2298622991 Let $q$ be $\metavar{min}(k, l)$,
2298722992 let $T_3$ be \UpperBoundType{$T_1$}{$T_2$},
22988- let $B_{3i}$ be $B_{1i}$, and
22993+ let $B_{3i}$ be $B_{1i}$, and finally
2298922994 let $P_{3i}$ be \LowerBoundType{$P_{1i}$}{$P_{2i}$}.
22990- Then \DefEquals {\UpperBoundType{$U_1$}{$U_2$}}{%
22995+ Then \DefEqualsNewline {\UpperBoundType{$U_1$}{$U_2$}}{%
2299122996 \code{$T_3$\,\FUNCTION<$X_1$\,\EXTENDS\,$B_{31}$,\,\ldots,\,$X_m$\,%
22992- \EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots,\ ,$P_{3q}$)}}.
22997+ \EXTENDS\,$B_{3m}$>($P_{31}$,\,\ldots[\ldots\ ,$P_{3q}$] )}}.
2299322998
2299422999 \commentary{%
2299523000 This case includes non-generic function types by allowing $m$ to be zero.%
@@ -23047,8 +23052,11 @@ \subsection{Standard Upper Bounds and Standard Lower Bounds}
2304723052%%
2304823053%% TODO(eernst), for review: Why do we not have a rule for
2304923054%% \UpperBoundType{T1 Function(P1..Pm, [...])}{T2 Function(P1..Pk, {...}}}
23050- %% = T3 Function(R1..Rk), where the left operand has at least k parameters,
23051- %% plus the converse?
23055+ %% = T3 Function(R1..Rk), where the left operand has at least k parameters
23056+ %% and every named parameter of the right operand is optional (plus the
23057+ %% same rule with operands swapped)?
23058+ %% Motivation: Some expressions of type `Function` would then have a more
23059+ %% precise type, and programs would be safer (a tiny bit, at least).
2305223060%%
2305323061\item
2305423062 \DefEquals{\UpperBoundType{$S_1$ \FUNCTION<\ldots>(\ldots)}{%
@@ -23411,7 +23419,7 @@ \subsubsection{The Standard Upper Bound of Distinct Interface Types}
2341123419$\{\;T\;|\;T\,\in\,M\;\wedge\;\NominalTypeDepth{$T$}\,=\,n\,\}$
2341223420for any natural number $n$.
2341323421Let $q$ be the largest number such that $M_q$ has cardinality one.
23414- Such a number must exist because $M_0$ is $\{\code{Object? }\}$.
23422+ Such a number must exist because $M_0$ is $\{\code{Object}\}$.
2341523423The least upper bound of $I$ and $J$ is then the sole element of $M_q$.
2341623424
2341723425
@@ -23644,7 +23652,7 @@ \subsection{Least and Greatest Closure of Types}
2364423652 the least closure of $S$ with respect to $L$ is
2364523653
2364623654 \noindent
23647- \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23655+ \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2364823656
2364923657 \noindent
2365023658 where
@@ -23659,7 +23667,7 @@ \subsection{Least and Greatest Closure of Types}
2365923667 the greatest closure of $S$ with respect to $L$ is
2366023668
2366123669 \noindent
23662- \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}{r}
23670+ \FunctionTypeNamed{U_0}{ }{X}{B}{s}{U}{n}{x}{k}
2366323671
2366423672 \noindent
2366523673 where $U_0$ is the greatest closure of $T_0$ with respect to $L$,
@@ -23715,15 +23723,17 @@ \subsection{Types Bounded by Types}
2371523723\LMLabel{typesBoundedByTypes}
2371623724
2371723725\LMHash{}%
23718- For a given type $T_0$, we introduce the notion of a
23719- \IndexCustom{$T_0$ bounded type}{type!T0 bounded}:
23720- $T_0$ itself is $T_0$ bounded;
23721- if $B$ is $T_0$ bounded and
23726+ For a given type $T$, we introduce the notion of a
23727+ % `T bounded` at the end should have been `$T$ bounded`, but makeindex
23728+ % seems to be unable to allow math mode in that position.
23729+ \IndexCustom{$T$ bounded type}{type!T bounded}:
23730+ $T$ itself is $T$ bounded;
23731+ if $B$ is $T$ bounded and
2372223732$X$ is a type variable with bound $B$
23723- then $X$ is $T_0 $ bounded;
23724- finally, if $B$ is $T_0 $ bounded and
23733+ then $X$ is $T $ bounded;
23734+ finally, if $B$ is $T $ bounded and
2372523735$X$ is a type variable
23726- then $X \& B$ is $T_0 $ bounded.
23736+ then $X \& B$ is $T $ bounded.
2372723737
2372823738\LMHash{}%
2372923739In particular, a
@@ -23737,11 +23747,11 @@ \subsection{Types Bounded by Types}
2373723747\LMHash{}%
2373823748A
2373923749\IndexCustom{function-type bounded type}{type!function-type bounded}
23740- is a type $T $ which is $T_0 $ bounded where $T_0 $ is a function type
23750+ is a type $S $ which is $T $ bounded where $T $ is a function type
2374123751(\ref{functionTypes}).
23742- A function-type bounded type $T $ has an
23752+ A function-type bounded type $S $ has an
2374323753\Index{associated function type}
23744- which is the unique function type $T_0 $ such that $T $ is $T_0 $ bounded.
23754+ which is the unique function type $T $ such that $S $ is $T $ bounded.
2374523755
2374623756
2374723757\subsection{Class Building Types}
@@ -23802,7 +23812,7 @@ \subsection{Interface Types}
2380223812are interface types,
2380323813and so are
2380423814\code{Future<$T$>}, \code{Stream<$T$>}, \code{Iterable<$T$>},
23805- \code{List<$T$>}, \code{Map<$S$,\,\,$T$}, and \code{Set<$T$>},
23815+ \code{List<$T$>}, \code{Map<$S$,\,\,$T$> }, and \code{Set<$T$>},
2380623816for any $S$ and $T$.%
2380723817}
2380823818
@@ -23928,8 +23938,13 @@ \subsection{Type Null}
2392823938\code{Null} is a subtype of all types of the form \code{$T$?},
2392923939and of all types $S$ such that \futureOrBase{S} is
2393023940a top type or a type of the form \code{$T$?}.
23931- The only non-trivial subtypes of \code{Null} are
23932- \code{Never} and subtypes of \code{Never}
23941+ The only subtypes of \code{Null} are
23942+ other types that contain the null object and no other objects,
23943+ e.g., \code{Null?},
23944+ the empty type,
23945+ i.e., \code{Never} and subtypes of \code{Never},
23946+ and types that could be either,
23947+ e.g., a type variable with bound \code{Null}
2393323948(\ref{subtypeRules}).%
2393423949}
2393523950
@@ -24455,22 +24470,10 @@ \subsection{Type Void}
2445524470\commentary{%
2445624471The type \VOID{} is a top type
2445724472(\ref{superBoundedTypes}),
24458- so \VOID{} and \code{Object} are subtypes of each other
24473+ so \VOID{} and \code{Object? } are subtypes of each other
2445924474(\ref{subtypes}),
2446024475which also implies that any object can be
24461- the value of an expression of type \VOID.
24462- %
24463- Consequently, any instance of type \code{Type} which reifies the type \VOID{}
24464- must compare equal (according to the \lit{==} operator \ref{equality})
24465- to any instance of \code{Type} which reifies the type \code{Object}
24466- (\ref{dynamicTypeSystem}).
24467- It is not guaranteed that \code{identical(\VOID, Object)} evaluates to
24468- the \TRUE{} object.
24469- In fact, it is not recommended that implementations strive to achieve this,
24470- because it may be more important to ensure that diagnostic messages
24471- (including stack traces and dynamic error messages)
24472- preserve enough information to use the word `void' when referring to types
24473- which are specified as such in source code.%
24476+ the value of an expression of type \VOID.%
2447424477}
2447524478
2447624479\LMHash{}%
@@ -24608,7 +24611,7 @@ \subsection{Type Void}
2460824611}
2460924612
2461024613\begin{dartCode}
24611- \FOR{} (Object x in <\VOID>[]) \{\} // \comment{Error.}
24614+ \FOR{} (Object? x in <\VOID>[]) \{\} // \comment{Error.}
2461224615\AWAIT{} \FOR{} (int x \IN{} new Stream<\VOID{}>.empty()) \{\} // \comment{Error.}
2461324616\FOR{} (\VOID{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK.}
2461424617\FOR (\VAR{} x \IN{} <\VOID{}>[]) \{\ldots\} // \comment{OK, type of x inferred.}
@@ -24917,9 +24920,11 @@ \subsection{Definite Assignment}
2491724920(\commentary{%
2491824921e.g., as an expression, or as the left hand side of an assignment%
2491924922}),
24920- the variable has a status as being
24921- \IndexCustom{definitely assigned}{local variable!definitely assigned} or
24922- \IndexCustom{definitely unassigned}{local variable!definitely unassigned}.
24923+ the variable can be
24924+ \IndexCustom{definitely assigned}{local variable!definitely assigned},
24925+ and it can be
24926+ \IndexCustom{definitely unassigned}{local variable!definitely unassigned},
24927+ and it can be neither.
2492324928
2492424929\commentary{%
2492524930The precise flow analysis which determines this status at each location
@@ -25172,15 +25177,16 @@ \subsection{Type Promotion}
2517225177
2517325178%% TODO(eernst), for review: The null safety spec says that `T?` is
2517425179%% promoted to `T`, but implementations _do_ promote `X extends int?` to
25175- %% `X & int`. So I've specified the latter. This is also more consistent
25176- %% with the approach used with `==`.
25180+ %% `X & int`. So we may be able to specify something which will yield
25181+ %% slightly more precise types, and which is more precisely the implemented
25182+ %% behavior.
2517725183\LMHash{}%
2517825184A check of the form \code{$v$\,\,!=\,\,\NULL},
2517925185\code{\NULL\,\,!=\,\,$v$},
2518025186or \code{$v$\,\,\IS\,\,$T$}
25181- where $v$ has type $T$ at $\ell$
25187+ where $v$ has static type $T? $ at $\ell$
2518225188promotes the type of $v$
25183- to \NonNullType{ $T$} in the \TRUE{} continuation,
25189+ to $T$ in the \TRUE{} continuation,
2518425190and to \code{Null} in the \FALSE{} continuation.
2518525191
2518625192\commentary{%
0 commit comments