-
-
Notifications
You must be signed in to change notification settings - Fork 165
/
registry.go
174 lines (148 loc) · 4.83 KB
/
registry.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
package huma
import (
"encoding"
"encoding/json"
"fmt"
"reflect"
"strings"
"unicode/utf8"
)
// Registry creates and stores schemas and their references, and supports
// marshalling to JSON/YAML for use as an OpenAPI #/components/schemas object.
// Behavior is implementation-dependent, but the design allows for recursive
// schemas to exist while being flexible enough to support other use cases
// like only inline objects (no refs) or always using refs for structs.
type Registry interface {
Schema(t reflect.Type, allowRef bool, hint string) *Schema
SchemaFromRef(ref string) *Schema
TypeFromRef(ref string) reflect.Type
Map() map[string]*Schema
RegisterTypeAlias(t reflect.Type, alias reflect.Type)
}
// DefaultSchemaNamer provides schema names for types. It uses the type name
// when possible, ignoring the package name. If the type is generic, e.g.
// `MyType[SubType]`, then the brackets are removed like `MyTypeSubType`.
// If the type is unnamed, then the name hint is used.
// Note: if you plan to use types with the same name from different packages,
// you should implement your own namer function to prevent issues. Nested
// anonymous types can also present naming issues.
func DefaultSchemaNamer(t reflect.Type, hint string) string {
name := deref(t).Name()
if name == "" {
name = hint
}
// Better support for lists, so e.g. `[]int` becomes `ListInt`.
name = strings.ReplaceAll(name, "[]", "List[")
result := ""
for _, part := range strings.FieldsFunc(name, func(r rune) bool {
// Split on special characters. Note that `,` is used when there are
// multiple inputs to a generic type.
return r == '[' || r == ']' || r == '*' || r == ','
}) {
// Split fully qualified names like `github.com/foo/bar.Baz` into `Baz`.
fqn := strings.Split(part, ".")
base := fqn[len(fqn)-1]
// Add to result, and uppercase for better scalar support (`int` -> `Int`).
// Use unicode-aware uppercase to support non-ASCII characters.
r, size := utf8.DecodeRuneInString(base)
result += strings.ToUpper(string(r)) + base[size:]
}
name = result
return name
}
type mapRegistry struct {
prefix string
schemas map[string]*Schema
types map[string]reflect.Type
seen map[reflect.Type]bool
namer func(reflect.Type, string) string
aliases map[reflect.Type]reflect.Type
}
func (r *mapRegistry) Schema(t reflect.Type, allowRef bool, hint string) *Schema {
origType := t
t = deref(t)
// Pointer to array should decay to array
if t.Kind() == reflect.Array || t.Kind() == reflect.Slice {
origType = t
}
alias, ok := r.aliases[t]
if ok {
return r.Schema(alias, allowRef, hint)
}
getsRef := t.Kind() == reflect.Struct
if t == timeType {
// Special case: time.Time is always a string.
getsRef = false
}
v := reflect.New(t).Interface()
if _, ok := v.(SchemaProvider); ok {
// Special case: type provides its own schema
getsRef = false
}
if _, ok := v.(encoding.TextUnmarshaler); ok {
// Special case: type can be unmarshalled from text so will be a `string`
// and doesn't need a ref. This simplifies the schema a little bit.
getsRef = false
}
name := r.namer(origType, hint)
if getsRef {
if s, ok := r.schemas[name]; ok {
if _, ok := r.seen[t]; !ok {
// Name matches but type is different, so we have a dupe.
panic(fmt.Errorf("duplicate name: %s, new type: %s, existing type: %s", name, t, r.types[name]))
}
if allowRef {
return &Schema{Ref: r.prefix + name}
}
return s
}
}
// First, register the type so refs can be created above for recursive types.
if getsRef {
r.schemas[name] = &Schema{}
r.types[name] = t
r.seen[t] = true
}
s := SchemaFromType(r, origType)
if getsRef {
r.schemas[name] = s
}
if getsRef && allowRef {
return &Schema{Ref: r.prefix + name}
}
return s
}
func (r *mapRegistry) SchemaFromRef(ref string) *Schema {
if !strings.HasPrefix(ref, r.prefix) {
return nil
}
return r.schemas[ref[len(r.prefix):]]
}
func (r *mapRegistry) TypeFromRef(ref string) reflect.Type {
return r.types[ref[len(r.prefix):]]
}
func (r *mapRegistry) Map() map[string]*Schema {
return r.schemas
}
func (r *mapRegistry) MarshalJSON() ([]byte, error) {
return json.Marshal(r.schemas)
}
func (r *mapRegistry) MarshalYAML() (interface{}, error) {
return r.schemas, nil
}
// RegisterTypeAlias(t, alias) makes the schema generator use the `alias` type instead of `t`.
func (r *mapRegistry) RegisterTypeAlias(t reflect.Type, alias reflect.Type) {
r.aliases[t] = alias
}
// NewMapRegistry creates a new registry that stores schemas in a map and
// returns references to them using the given prefix.
func NewMapRegistry(prefix string, namer func(t reflect.Type, hint string) string) Registry {
return &mapRegistry{
prefix: prefix,
schemas: map[string]*Schema{},
types: map[string]reflect.Type{},
seen: map[reflect.Type]bool{},
aliases: map[reflect.Type]reflect.Type{},
namer: namer,
}
}