-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_lora.py
313 lines (255 loc) · 13.9 KB
/
train_lora.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
# -*- coding: utf-8 -*-
# 240411
# 1. 更新了模型加载方式;
# 2. 更新了int4模型的模型函数(quantize +@classmethod; 改init部分),增加了lora_utils.py
# 231010
# 1. 修改了training_args的json文件:将eval和save的参数都改为了epoch
# 231008
# 1. 修改了前面的args为指定路径 减少了执行时候参数的输入
# 2. 修改了后面dataset的表头 和自定义数据集统一 这个很重要
import os
import argparse
from typing import List, Dict, Optional
import torch
import torch.nn as nn
from loguru import logger
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
HfArgumentParser,
set_seed,
TrainingArguments,
Trainer,
BitsAndBytesConfig
)
from peft import (
TaskType,
LoraConfig,
get_peft_model,
set_peft_model_state_dict,
prepare_model_for_kbit_training,
)
from peft.utils import TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING
_compute_dtype_map = {
'fp32': torch.float32,
'fp16': torch.float16,
'bf16': torch.bfloat16
}
def parse_args():
parser = argparse.ArgumentParser(description='ChatGLM-6B LoRA')
# parser.add_argument('--train_args_json', type=str, required=True, help='TrainingArguments的json文件')
parser.add_argument('--train_args_json', type=str, default='chatGLM_6B_LoRA.json', help='TrainingArguments的json文件')
parser.add_argument('--model_name_or_path', type=str, default='glm2-6b-int4-lora', help='模型id或local path')
parser.add_argument('--model_bin_path', type=str, default='glm2-6b-int4-lora/pytorch_model.bin',
help='模型bin local path')
# parser.add_argument('--train_data_path', type=str, required=True, help='训练数据路径')
# parser.add_argument('--eval_data_path', type=str, default=None, help='验证数据路径')
parser.add_argument('--train_data_path', type=str, default='data/dev.json', help='训练数据路径')
parser.add_argument('--eval_data_path', type=str, default='data/dev.json', help='验证数据路径')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument('--max_input_length', type=int, default=1024, help='instruction + input的最大长度')
parser.add_argument('--max_output_length', type=int, default=1024, help='output的最大长度')
parser.add_argument('--lora_rank', type=int, default=4, help='lora rank')
parser.add_argument('--lora_alpha', type=int, default=32, help='lora_alpha')
parser.add_argument('--lora_dropout', type=float, default=0.05, help='lora dropout')
parser.add_argument('--resume_from_checkpoint', type=str, default='saved_files/chatGLM2_6B_int4_LoRA', help='恢复训练的checkpoint路径')
# parser.add_argument('--prompt_text', type=str, default='请完成下述医疗文本事件信息提取任务:根据所提供的时间戳,提取医疗文本中包含的#影像检查、基因检测、手术、用药#四种类型的临床事件:请返回所有从文本中提取的属于#影像检查、基因检测、手术、用药#类型的临床事件的时间、事件类型、事件项目、结论;若有信息项为空,则以NONE填充;请勿自行编撰事件及时间;一项时间戳可能对应多个事件,请全部提取。时间戳及待分析文本如下:\n***', help='统一添加在所有数据前的指令文本')
parser.add_argument('--prompt_text', type=str,
default='请完成下述医疗文本事件信息提取任务:根据所提供的医疗文本,判断其中是否包含#影像检查、基因检测、手术、用药#四种类型的临床事件;如果有,请返回所有从文本中提取的属于#影像检查、基因检测、手术、用药#类型的临床事件的时间、事件类型、事件项目、结论;若有信息项为空,则以NONE填充;请勿自行编撰事件及时间。待分析文本如下:\n***',
help='统一添加在所有数据前的指令文本')
parser.add_argument('--end_text', type=str,
default='***\n请直接以jsonl输出结果,格式为:{"time": "","event_type": "","project": "","conclusion": ""}',
help='统一添加在所有数据后的指令文本')
# parser.add_argument('--end_text', type=str,
# default='***\n请只根据判断结果返回"Yes"或"No"。',
# help='统一添加在所有数据后的指令文本')
# parser.add_argument('--prompt_text', type=str,
# default='请判断待分析文本中是否包含#影像检查、基因检测、手术、用药#四种类型的完整临床事件;如果有,请直接返回"Yes";否则请直接返回"No"。待分析文本如下:\n***',
# help='统一添加在所有数据前的指令文本')
parser.add_argument('--compute_dtype', type=str, default='fp32',
choices=['fp32', 'fp16', 'bf16'], help='计算数据类型')
return parser.parse_args()
def tokenize_func(example, tokenizer, global_args, ignore_label_id=-100):
"""单样本tokenize处理
注意要改成适合的dataset的形式
"""
question = global_args.prompt_text + example['input_text'] + global_args.end_text
if example.get('input', None):
if example['input'].strip():
question += f"\n{example['input']}"
answer = example['output_text']
q_ids = tokenizer.encode(text=question, add_special_tokens=False)
a_ids = tokenizer.encode(text=answer, add_special_tokens=False)
if len(q_ids) > global_args.max_input_length - 2: # 2 - gmask, bos
q_ids = q_ids[: global_args.max_input_length - 2]
if len(a_ids) > global_args.max_output_length - 1: # 1 - eos
a_ids = a_ids[: global_args.max_output_length - 1]
input_ids = tokenizer.build_inputs_with_special_tokens(q_ids, a_ids)
# question_length = input_ids.index(tokenizer.bos_token_id)
question_length = len(q_ids) + 2 # chatglm1 - gmask, bos, chatglm2 - gmask, sop
labels = [ignore_label_id] * question_length + input_ids[question_length:]
return {'input_ids': input_ids, 'labels': labels}
def get_dataset(data_path, tokenizer, global_args):
"""读取本地数据文件,并tokenize,shuffle,返回datasets.dataset"""
data = load_dataset('json', data_files=data_path)
column_names = data['train'].column_names
dataset = data['train'].map(lambda example: tokenize_func(example, tokenizer, global_args),
batched=False, remove_columns=column_names)
dataset = dataset.shuffle(seed=global_args.seed)
dataset = dataset.flatten_indices()
return dataset
class DataCollatorForChatGLM:
def __init__(self,
pad_token_id: int,
max_length: int = 2048,
ignore_label_id: int = -100):
self.pad_token_id = pad_token_id
self.ignore_label_id = ignore_label_id
self.max_length = max_length
def __call__(self, batch_data: List[Dict[str, List]]) -> Dict[str, torch.Tensor]:
"""根据batch最大长度做padding"""
len_list = [len(d['input_ids']) for d in batch_data]
batch_max_len = max(len_list)
input_ids, labels = [], []
for len_of_d, d in sorted(zip(len_list, batch_data), key=lambda x: -x[0]):
pad_len = batch_max_len - len_of_d
ids = d['input_ids'] + [self.pad_token_id] * pad_len
label = d['labels'] + [self.ignore_label_id] * pad_len
if batch_max_len > self.max_length:
ids = ids[: self.max_length]
label = label[: self.max_length]
input_ids.append(torch.LongTensor(ids))
labels.append(torch.LongTensor(label))
input_ids = torch.stack(input_ids)
labels = torch.stack(labels)
return {'input_ids': input_ids, 'labels': labels}
class CastOutputToFloat(nn.Sequential):
def forward(self, x):
return super().forward(x).to(torch.float32)
def prepare_model_for_half_training(model, output_embedding_layer_name="lm_head",
use_gradient_checkpointing=True, layer_norm_names=["layer_norm"]):
r"""
This method wrapps the entire protocol for preparing a model before running a training. This includes:
1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
head to fp32
Args:
model, (`transformers.PreTrainedModel`):
The loaded model from `transformers`
"""
# 不要使用 model.half(), 这样会先截取精度再训练了, 最初data就要保持half
for name, param in model.named_parameters():
# freeze base model's layers
param.requires_grad = False
# cast layer norm in fp32 for stability for 8bit models
if param.ndim == 1 and any(layer_norm_name in name for layer_norm_name in layer_norm_names):
param.data = param.data.to(torch.float32)
elif output_embedding_layer_name in name: # lm_head也需要是tf.float32(最后一层)
param.data = param.data.to(torch.float32)
else:
param.data = param.data.to(torch.float32)
# param.data = param.data.to(torch.half)
if use_gradient_checkpointing:
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# enable gradient checkpointing for memory efficiency
model.gradient_checkpointing_enable()
return model
class LoRATrainer(Trainer):
def save_model(self, output_dir: Optional[str] = None, _internal_call: bool = False):
"""只保存adapter"""
if output_dir is None:
output_dir = self.args.output_dir
self.model.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, "training_args.bin"))
def train(global_args):
hf_parser = HfArgumentParser(TrainingArguments)
hf_train_args, = hf_parser.parse_json_file(json_file=global_args.train_args_json)
set_seed(global_args.seed)
hf_train_args.seed = global_args.seed
model_max_length = global_args.max_input_length + global_args.max_output_length
# LoRA
target_modules = TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING['chatglm']
lora_config = LoraConfig(
r=global_args.lora_rank,
lora_alpha=global_args.lora_alpha,
target_modules=target_modules,
lora_dropout=global_args.lora_dropout,
bias='none',
inference_mode=False,
task_type=TaskType.CAUSAL_LM
)
tokenizer = AutoTokenizer.from_pretrained(global_args.model_name_or_path, trust_remote_code=True)
conf = AutoConfig.from_pretrained(global_args.model_name_or_path, trust_remote_code=True)
model = AutoModel.from_config(conf, trust_remote_code=True)
model.attach_lora(
lora_r=global_args.lora_rank,
lora_alpha=global_args.lora_alpha,
lora_dropout_rate=global_args.lora_dropout,
)
stdc = torch.load(global_args.model_bin_path, map_location=torch.device('cpu'))
model.load_state_dict(stdc, False)
# model = model.cpu()
# model = AutoModel.from_pretrained(global_args.model_name_or_path,
# device_map='auto',
# trust_remote_code=True)
# model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
# model = prepare_model_for_half_training(model,
# use_gradient_checkpointing=True,
# output_embedding_layer_name="lm_head",
# layer_norm_names=["post_attention_layernorm",
# "final_layernorm",
# "input_layernorm",
# ],
# )
#
# model.gradient_checkpointing_enable()
# model.enable_input_require_grads()
# model.is_parallelizable = True
# model.model_parallel = True
# # model.lm_head = CastOutputToFloat(model.lm_head)
model.config.use_cache = (
False
)
# model = get_peft_model(model, lora_config)
resume_from_checkpoint = global_args.resume_from_checkpoint
if resume_from_checkpoint is not None:
checkpoint_name = os.path.join(resume_from_checkpoint, 'pytorch_model.bin')
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, 'adapter_model.bin'
)
resume_from_checkpoint = False
if os.path.exists(checkpoint_name):
logger.info(f'Restarting from {checkpoint_name}')
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
logger.info(f'Checkpoint {checkpoint_name} not found')
# model.print_trainable_parameters()
# data
train_dataset = get_dataset(global_args.train_data_path, tokenizer, global_args)
eval_dataset = None
if global_args.eval_data_path:
eval_dataset = get_dataset(global_args.eval_data_path, tokenizer, global_args)
data_collator = DataCollatorForChatGLM(pad_token_id=tokenizer.pad_token_id,
max_length=model_max_length)
# train
trainer = LoRATrainer(
model=model,
args=hf_train_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
data_collator=data_collator
)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
trainer.model.save_pretrained(hf_train_args.output_dir)
if __name__ == "__main__":
args = parse_args()
train(args)