forked from akavel/polyclip-go
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathclipper.go
621 lines (556 loc) · 18 KB
/
clipper.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
// Copyright (c) 2011 Mateusz Czapliński (Go port)
// Copyright (c) 2011 Mahir Iqbal (as3 version)
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// based on http://code.google.com/p/as3polyclip/ (MIT licensed)
// and code by Martínez et al: http://wwwdi.ujaen.es/~fmartin/bool_op.html (public domain)
package polyclip
import (
"fmt"
"math"
"sort"
)
//func _DBG(f func()) { f() }
func _DBG(f func()) {}
type polygonType int
const (
_SUBJECT polygonType = iota
_CLIPPING
)
type edgeType int
const (
_EDGE_NORMAL edgeType = iota
_EDGE_NON_CONTRIBUTING
_EDGE_SAME_TRANSITION
_EDGE_DIFFERENT_TRANSITION
)
// This class contains methods for computing clipping operations on polygons.
// It implements the algorithm for polygon intersection given by Francisco Martínez del Río.
// See http://wwwdi.ujaen.es/~fmartin/bool_op.html
type clipper struct {
subject, clipping Polygon
eventQueue
}
func (c *clipper) compute(operation Op) Polygon {
// Test 1 for trivial result case
if len(c.subject)*len(c.clipping) == 0 {
switch operation {
case DIFFERENCE:
return c.subject.Clone()
case UNION:
if len(c.subject) == 0 {
return c.clipping.Clone()
}
return c.subject.Clone()
}
return Polygon{}
}
// Test 2 for trivial result case
subjectbb := c.subject.BoundingBox()
clippingbb := c.clipping.BoundingBox()
if !subjectbb.Overlaps(clippingbb) {
switch operation {
case DIFFERENCE:
return c.subject.Clone()
case UNION:
result := c.subject.Clone()
for _, cont := range c.clipping {
result.Add(cont.Clone())
}
return result
}
return Polygon{}
}
// Add each segment to the eventQueue, sorted from left to right.
for _, cont := range c.subject {
for i := range cont {
if !(operation == CLIPLINE && i == len(cont)-1) {
// Add subject segment to event queue, unless the subject is a line
// string and it is the last (closing) segment.
addProcessedSegment(&c.eventQueue, cont.segment(i), _SUBJECT)
}
}
}
for _, cont := range c.clipping {
for i := range cont {
addProcessedSegment(&c.eventQueue, cont.segment(i), _CLIPPING)
}
}
connector := connector{operation: operation} // to connect the edge solutions
// This is the sweepline. That is, we go through all the polygon edges
// by sweeping from left to right.
S := sweepline{}
MINMAX_X := math.Min(subjectbb.Max.X, clippingbb.Max.X)
_DBG(func() {
e := c.eventQueue.dequeue()
c.eventQueue.enqueue(e)
fmt.Print("\nInitial queue:\n")
for i, e := range c.eventQueue.elements {
fmt.Println(i, "=", *e)
}
})
for !c.eventQueue.IsEmpty() {
var prev, next *endpoint
e := c.eventQueue.dequeue()
_DBG(func() { fmt.Printf("\nProcess event: (of %d)\n%v\n", len(c.eventQueue.elements)+1, *e) })
// optimization 1
switch {
case (operation == INTERSECTION || operation == CLIPLINE) && e.p.X > MINMAX_X:
fallthrough
case operation == DIFFERENCE && e.p.X > subjectbb.Max.X:
return connector.toPolygon()
//case operation == UNION && e.p.X > MINMAX_X:
// _DBG(func() { fmt.Print("\nUNION optimization, fast quit\n") })
// // add all the non-processed line segments to the result
// if !e.left {
// connector.add(e.segment())
// }
//
// for !c.eventQueue.IsEmpty() {
// e = c.eventQueue.dequeue()
// if !e.left {
// connector.add(e.segment())
// }
// }
// return connector.toPolygon()
}
if e.left { // the line segment must be inserted into S
pos := S.insert(e)
//e.PosInS = pos
prev = nil
if pos > 0 {
prev = S[pos-1]
}
next = nil
if pos < len(S)-1 {
next = S[pos+1]
}
// Compute the inside and inOut flags
switch {
case prev == nil: // there is not a previous line segment in S?
e.inside, e.inout = false, false
case prev.edgeType != _EDGE_NORMAL:
if pos-2 < 0 { // e overlaps with prev
// Not sure how to handle the case when pos - 2 < 0, but judging
// from the C++ implementation this looks like how it should be handled.
e.inside, e.inout = false, false
if prev.polygonType != e.polygonType { // [MC: where does this come from?]
e.inside = true
} else {
e.inout = true
}
} else if e.segmentsEqual(prev) {
// The second of two overlapping line segments. Determine the flags from the edge types.
if e.edgeType == _EDGE_SAME_TRANSITION || prev.edgeType == _EDGE_SAME_TRANSITION {
e.inout = prev.inout
} else {
e.inout = !prev.inout
}
} else {
// The previous two line segments in S are overlapping line segments
prevTwo := S[pos-2]
if prev.polygonType == e.polygonType {
e.inout = !prev.inout
e.inside = !prevTwo.inout
} else {
e.inout = !prevTwo.inout
e.inside = !prev.inout
}
}
case e.polygonType == prev.polygonType: // previous line segment in S belongs to the same polygon that "e" belongs to
e.inside = prev.inside
e.inout = !prev.inout
default: // previous line segment in S belongs to a different polygon that "e" belongs to
e.inside = !prev.inout
e.inout = prev.inside
}
_DBG(func() {
fmt.Println("Status line after insertion: ")
for _, e := range S {
fmt.Println(*e)
}
})
divided := make(map[*endpoint]bool)
// Process a possible intersection between "e" and its next neighbor in S
if next != nil {
for _, seg := range c.possibleIntersection(e, next) {
if seg != nil {
divided[seg] = true
}
}
}
// Process a possible intersection between "e" and its previous neighbor in S
if prev != nil {
for _, seg := range c.possibleIntersection(prev, e) {
if seg != nil {
divided[seg] = true
}
}
}
// If [prev] or [next] was divided but [e] was not, the context (sweep line S)
// for [e] may have changed, altering what e.inout and e.inside should be.
// [e] must thus be reenqueued to recompute e.inout and e.inside.
//
// (This should not be done if [e] was also divided; in that case
// the divided segments are already enqueued).
if len(divided) > 0 && !divided[e] {
S.remove(e)
c.eventQueue.enqueue(e)
}
} else { // the line segment must be removed from S
otherPos := -1
for i := range S {
if S[i].equals(e.other) {
otherPos = i
break
}
}
// otherPos := S.IndexOf(e.other)
// [or:] otherPos := e.other.PosInS
if otherPos != -1 {
prev = nil
if otherPos > 0 {
prev = S[otherPos-1]
}
next = nil
if otherPos < len(S)-1 {
next = S[otherPos+1]
}
}
if operation == _MAKE_VALID { // _MAKE_VALID is actually a unary operation; the _CLIPPING is ignored.
if e.polygonType == _SUBJECT {
connector.add(e.segment())
}
} else { // Check if the line segment belongs to the Boolean operation
if operation == CLIPLINE {
if e.other.inside && e.polygonType == _SUBJECT {
connector.add(e.segment())
}
}
switch e.edgeType {
case _EDGE_NORMAL:
switch operation {
case INTERSECTION:
if e.other.inside {
connector.add(e.segment())
}
case UNION:
if !e.other.inside {
connector.add(e.segment())
}
case DIFFERENCE:
if (e.polygonType == _SUBJECT && !e.other.inside) ||
(e.polygonType == _CLIPPING && e.other.inside) {
connector.add(e.segment())
}
case XOR:
connector.add(e.segment())
}
case _EDGE_SAME_TRANSITION:
if operation == INTERSECTION || operation == UNION {
connector.add(e.segment())
}
case _EDGE_DIFFERENT_TRANSITION:
if operation == DIFFERENCE {
connector.add(e.segment())
}
}
}
// delete line segment associated to e from S and check for intersection between the neighbors of "e" in S
if otherPos != -1 {
S.remove(S[otherPos])
}
if next != nil && prev != nil {
c.possibleIntersection(next, prev)
}
_DBG(func() { fmt.Print("Connector:\n", connector, "\n") })
}
_DBG(func() {
fmt.Println("Status line after processing intersections: ")
for _, e := range S {
fmt.Println(*e)
}
})
}
return connector.toPolygon()
}
func findIntersection(seg0, seg1 segment, tryBothDirections bool) (int, Point, Point) {
var pi0, pi1 Point
p0 := seg0.start
d0 := Point{seg0.end.X - p0.X, seg0.end.Y - p0.Y}
p1 := seg1.start
d1 := Point{seg1.end.X - p1.X, seg1.end.Y - p1.Y}
sqrEpsilon := 1e-21 // was originally 1e-3, which is very prone to false positives
E := Point{p1.X - p0.X, p1.Y - p0.Y}
kross := d0.X*d1.Y - d0.Y*d1.X
sqrKross := kross * kross
sqrLen0 := d0.Length()
sqrLen1 := d1.Length()
if sqrKross > sqrEpsilon*sqrLen0*sqrLen1 {
// lines of the segments are not parallel
s := (E.X*d1.Y - E.Y*d1.X) / kross
if s < 0 || s > 1 {
return 0, Point{}, Point{}
}
t := (E.X*d0.Y - E.Y*d0.X) / kross
if t < 0 || t > 1 {
return 0, Point{}, Point{}
}
// intersection of lines is a point an each segment [MC: ?]
pi0.X = p0.X + s*d0.X
pi0.Y = p0.Y + s*d0.Y
// [MC: commented fragment removed]
return 1, pi0, pi1
}
// lines of the segments are parallel
sqrLenE := E.Length()
kross = E.X*d0.Y - E.Y*d0.X
sqrKross = kross * kross
if sqrKross > sqrEpsilon*sqrLen0*sqrLenE {
// lines of the segment are different
return 0, pi0, pi1
}
// Lines of the segment are the same. Need to test for overlap of segments.
// s0 = Dot (D0, E) * sqrLen0
s0 := (d0.X*E.X + d0.Y*E.Y) / sqrLen0
// s1 = s0 + Dot (D0, D1) * sqrLen0
s1 := s0 + (d0.X*d1.X+d0.Y*d1.Y)/sqrLen0
smin := math.Min(s0, s1)
smax := math.Max(s0, s1)
w := make([]float64, 0)
imax := findIntersection2(0.0, 1.0, smin, smax, &w)
if imax > 0 {
pi0.X = p0.X + w[0]*d0.X
pi0.Y = p0.Y + w[0]*d0.Y
}
// For same-segment scenarios, this should be the case.
if imax > 1 {
pi1.X = p0.X + w[1]*d0.X
pi1.Y = p0.Y + w[1]*d0.Y
} else if tryBothDirections {
// However, findIntersection() is not symmetric and sometimes fails in one direction. Try the other.
if otherImax, otherPi0, otherPi1 := findIntersection(seg1, seg0, false); otherImax > imax {
return otherImax, otherPi0, otherPi1
}
_DBG(func() { fmt.Printf("WARNING: Could not find overlap in segments %v, %v\n", seg0, seg1) })
}
return imax, pi0, pi1
}
func findIntersection2(u0, u1, v0, v1 float64, w *[]float64) int {
if u1 < v0 || u0 > v1 {
return 0
}
if u1 == v0 {
*w = append(*w, u1)
return 1
}
// u1 > v0
if u0 == v1 {
*w = append(*w, u0)
return 1
}
// u0 < v1
if u0 < v0 {
*w = append(*w, v0)
} else {
*w = append(*w, u0)
}
if u1 > v1 {
*w = append(*w, v1)
} else {
*w = append(*w, u1)
}
return 2
}
// snaps the [pt] to one of [toPts] if they are equal within a tolerance factor.
// If none of the points are within the tolerance, the original pt is returned.
func snap(pt Point, e1, e2 *endpoint) Point {
pts := []Point{e1.p, e2.p, e1.other.p, e2.other.p}
for _, p := range pts {
if pt.Equals(p) { // Prefer strict equality over snapping.
return p
}
}
// Order the points in sweep-line ordering and test the middle points
// first (i.e. 2, 1, 0, 3) to avoid creating invalid divisions when
// two endpoints are within the tolerance.
sort.Slice(pts, func(i, j int) bool {
return pts[i].isBefore(pts[j])
})
pts[0], pts[2] = pts[2], pts[0]
const tolerance = 8e-14
for _, p := range pts {
if pt.equalWithin(p, tolerance) {
return p
}
}
return pt
}
// Returns the endpoints that were divided.
func (c *clipper) possibleIntersection(e1, e2 *endpoint) []*endpoint {
numIntersections, ip1, _ := findIntersection(e1.segment(), e2.segment(), true)
switch {
case numIntersections == 0:
return nil
case numIntersections == 1 && (e1.p.Equals(e2.p) || e1.other.p.Equals(e2.other.p)):
return nil // the line segments intersect at an endpoint of both line segments
}
// Adjust for floating point imprecision when intersections are created at endpoints, which
// otherwise has the tendency to corrupt the original polygons with new, almost-parallel segments.
ip1 = snap(ip1, e1, e2)
if numIntersections == 1 {
switch {
case e1.p.Equals(ip1) || e1.other.p.Equals(ip1): // e1 divides e2
return []*endpoint{c.divideSegment(e2, ip1)}
case e2.p.Equals(ip1) || e2.other.p.Equals(ip1): // e2 divides e1
return []*endpoint{c.divideSegment(e1, ip1)}
case !isValidSingleIntersection(e1, e2, ip1):
_DBG(func() { fmt.Printf("Dropping invalid intersection %v between %v and %v\n", ip1, e1, e2) })
return nil
default: // e1 and e2 divide each other
return []*endpoint{
c.divideSegment(e1, ip1),
c.divideSegment(e2, ip1),
}
}
}
if numIntersections == 2 && e1.polygonType == e2.polygonType {
_DBG(func() {
fmt.Printf("Dropping intersection %v from overlapping edges of the same polygon %v and %v\n", ip1, e1, e2)
})
// Note: This case is technically not handled by the algorithm. The original C++ code
// outputs: "Sorry, edges of the same polygon overlap" and exits.
return nil
}
// The line segments overlap
sortedEvents := make([]*endpoint, 0)
switch {
case e1.p.Equals(e2.p):
sortedEvents = append(sortedEvents, nil) // WTF [MC: WTF]
case endpointLess(e1, e2):
sortedEvents = append(sortedEvents, e2, e1)
default:
sortedEvents = append(sortedEvents, e1, e2)
}
switch {
case e1.other.p.Equals(e2.other.p):
sortedEvents = append(sortedEvents, nil)
case endpointLess(e1.other, e2.other):
sortedEvents = append(sortedEvents, e2.other, e1.other)
default:
sortedEvents = append(sortedEvents, e1.other, e2.other)
}
if len(sortedEvents) == 2 { // are both line segments equal?
e1.edgeType, e1.other.edgeType = _EDGE_NON_CONTRIBUTING, _EDGE_NON_CONTRIBUTING
if e1.inout == e2.inout {
e2.edgeType, e2.other.edgeType = _EDGE_SAME_TRANSITION, _EDGE_SAME_TRANSITION
} else {
e2.edgeType, e2.other.edgeType = _EDGE_DIFFERENT_TRANSITION, _EDGE_DIFFERENT_TRANSITION
}
return nil
}
if len(sortedEvents) == 3 { // the line segments share an endpoint
sortedEvents[1].edgeType, sortedEvents[1].other.edgeType = _EDGE_NON_CONTRIBUTING, _EDGE_NON_CONTRIBUTING
var idx int
// is the right endpoint the shared point?
if sortedEvents[0] != nil {
idx = 0
} else { // the shared point is the left endpoint
idx = 2
}
if e1.inout == e2.inout {
sortedEvents[idx].other.edgeType = _EDGE_SAME_TRANSITION
} else {
sortedEvents[idx].other.edgeType = _EDGE_DIFFERENT_TRANSITION
}
if sortedEvents[0] != nil {
return []*endpoint{c.divideSegment(sortedEvents[0], sortedEvents[1].p)}
} else {
return []*endpoint{c.divideSegment(sortedEvents[2].other, sortedEvents[1].p)}
}
}
if sortedEvents[0] != sortedEvents[3].other {
// no line segment includes totally the OtherEnd one
sortedEvents[1].edgeType = _EDGE_NON_CONTRIBUTING
if e1.inout == e2.inout {
sortedEvents[2].edgeType = _EDGE_SAME_TRANSITION
} else {
sortedEvents[2].edgeType = _EDGE_DIFFERENT_TRANSITION
}
return []*endpoint{
c.divideSegment(sortedEvents[0], sortedEvents[1].p),
c.divideSegment(sortedEvents[1], sortedEvents[2].p),
}
}
// one line segment includes the other one
sortedEvents[1].edgeType, sortedEvents[1].other.edgeType = _EDGE_NON_CONTRIBUTING, _EDGE_NON_CONTRIBUTING
firstDivided := c.divideSegment(sortedEvents[0], sortedEvents[1].p)
if e1.inout == e2.inout {
sortedEvents[3].other.edgeType = _EDGE_SAME_TRANSITION
} else {
sortedEvents[3].other.edgeType = _EDGE_DIFFERENT_TRANSITION
}
return []*endpoint{
firstDivided,
c.divideSegment(sortedEvents[3].other, sortedEvents[2].p),
}
}
// Returns the original endpoint if successfully divided, otherwise nil.
func (c *clipper) divideSegment(e *endpoint, p Point) *endpoint {
// "Right event" of the "left line segment" resulting from dividing e (the line segment associated to e)
r := &endpoint{p: p, left: false, polygonType: e.polygonType, other: e, edgeType: e.edgeType}
// "Left event" of the "right line segment" resulting from dividing e (the line segment associated to e)
l := &endpoint{p: p, left: true, polygonType: e.polygonType, other: e.other, edgeType: e.other.edgeType}
// Discard segments of the wrong-direction (including zero-length). See isValidSingleIntersection() for reasoning.
if !l.isValidDirection() || !r.isValidDirection() {
_DBG(func() { fmt.Printf("Dropping invalid division of %v at %v:\n - %v\n - %v\n", *e, p, l, r) })
return nil
}
if endpointLess(l, e.other) { // avoid a rounding error. The left event would be processed after the right event
e.other.left = true
e.left = false
}
e.other.other = l
e.other = r
c.eventQueue.enqueue(l)
c.eventQueue.enqueue(r)
return e
}
func addProcessedSegment(q *eventQueue, segment segment, polyType polygonType) {
if segment.start.Equals(segment.end) {
// Possible degenerate condition
return
}
e1 := &endpoint{p: segment.start, left: true, polygonType: polyType}
e2 := &endpoint{p: segment.end, left: true, polygonType: polyType, other: e1}
e1.other = e2
switch {
case e1.p.X < e2.p.X:
e2.left = false
case e1.p.X > e2.p.X:
e1.left = false
case e1.p.Y < e2.p.Y:
// the line segment is vertical. The bottom endpoint is the left endpoint
e2.left = false
default:
e1.left = false
}
// Pushing it so the que is sorted from left to right, with object on the left having the highest priority
q.enqueue(e1)
q.enqueue(e2)
}