-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMazeSolver.py
506 lines (460 loc) · 21 KB
/
MazeSolver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import os
import random
import time
import numpy as np
from AlgorithmLibrary import DisjointEnsemble
class MazeSolver:
"""
Maze-solving algorithm implementation via FloodFill with basic GUI.
Given a maze and initial position, simulates the iterations of the
FloodFill algorithm, and provides tools to generate random mazes.
To setup the maze, form a 2-D array of unsigned integers
such that the binary representation of the coordinate describes
the structure of the maze at that position, where redundant
placements are deduplicated with OR logic:
0001 = 1 = North Wall (Up)
0010 = 2 = South Wall (Down)
0100 = 4 = West Wall (Left)
1000 = 8 = East Wall (Right)
For instance, the sequence of numbers (11, 7, 10) will represent the
following adjacent maze cells in the (y,x)-coordinate system:
. ------> x-axis
| --- ---
| 11 | 7 10 |
v --- --- ---
y-axis
"""
class Coordinate:
def __init__(self, pos: tuple[int, int] = (0,0), dir: str = None):
self.y = pos[0]
self.x = pos[1]
self.dir = dir
def getPos(self):
return (self.y, self.x)
def setPos(self, pos: tuple[int, int]):
self.y = pos[0]
self.x = pos[1]
def getDir(self):
return self.dir
def setDir(self, dir: str):
self.dir = dir
class Direction:
UP = "u"
DOWN = "d"
LEFT = "l"
RIGHT = "r"
class MazeObject:
"""
Constant class attributes describing maze objects
and mouse orientations along with their unique
visual representation in the GUI.
"""
V_WALL = ":"
V_WALL_OBS = "|"
V_OPEN = " "
H_WALL = "---"
H_WALL_OBS = "==="
H_OPEN = " "
DEST = " O "
MOUSE_UP = " ^ "
MOUSE_LEFT = " < "
MOUSE_RIGHT = " > "
MOUSE_DOWN = " v "
MOUSE_ORIENT = {
"u": MOUSE_UP,
"d": MOUSE_DOWN,
"l": MOUSE_LEFT,
"r": MOUSE_RIGHT
}
# Directional Encoding Dictionary
bitDirection = {
"u": 1, # Up
"d": 2, # Down
"l": 4, # Left
"r": 8, # Right
"o": 0, # Open (None)
"c": 15 # Closed (All)
}
# Map from coordinate delta to relative directions.
deltaDir = {
(0,1): {"cur": "r", "adj": "l"},
(0,-1): {"cur": "l", "adj": "r"},
(1,0): {"cur": "d", "adj": "u"},
(-1,0): {"cur": "u", "adj": "d"}
}
# Map from direction to coordinate delta.
dirDelta = {
"u": (-1,0),
"d": (1,0),
"l": (0,-1),
"r": (0,1),
"w": (-1,0),
"s": (1,0),
"a": (0,-1),
"d": (0,1)
}
def __init__(self, maze: np.ndarray, mouse: tuple[int, int] = (0,0)):
"""
Initialize the maze from a NumPy array encoding of the maze.
"""
# Validate input parameters.
if any([
maze.shape[0] < 1,
maze.shape[1] < 1,
mouse[0] < 0,
mouse[0] >= maze.shape[0],
mouse[1] < 0,
mouse[1] >= maze.shape[1],
]):
raise ValueError(
f"[MazeSolver] Maze dimensions should be positive, and the mouse initial position must be located in the maze.\n" +
f"Maze Dimensions: ({maze.shape[0]}, {maze.shape[1]})\n" +
f"Mouse Coordinates: ({mouse[0]}, {mouse[1]})"
)
# Initialize maze variables. Persist maze state for efficient further solving.
self.mouse = self.Coordinate(mouse, self.Direction.DOWN)
self.maze = maze.astype(int)
self.observedMaze = np.zeros(self.maze.shape, dtype=int)
self.floodFillMatrix = np.zeros(self.maze.shape, dtype=int)
self.destination = None
def __repr__(self):
return self._drawMaze(self.maze, mouse=self.mouse, dest=self.destination)
def solve(self, dest: tuple[int, int] = (0,0), sim: bool = True, xray: bool = False, debug: bool = False):
"""
Solve the maze by relocating the mouse to the destination coordinates (y,x).
"""
# Validate destination.
y, x = dest
if any([
y < 0,
y >= self.maze.shape[0],
x < 0,
x >= self.maze.shape[1],
]):
raise ValueError(
f"[MazeSolver] Destination coordinates must be located in the maze.\n" +
f"Maze Dimensions: ({self.maze.shape[0]}, {self.maze.shape[1]})\n" +
f"Destination Coordinates: ({y}, {x})"
)
# Mark destination.
self.destination = dest
# Reset distances for FloodFill.
self.floodFillMatrix = np.zeros(self.maze.shape, dtype=int)
# Solve the maze step-by-step.
while True:
# Observe walls to update observedMaze.
for delta, wallDirs in self.deltaDir.items():
if self._checkWall(self.mouse.getPos(), self.maze, wallDirs["cur"]):
# Add wall for current cell and adjacent cell.
adjCell = self._applyDelta(self.mouse.getPos(), delta)
self._addWall(self.mouse.getPos(), self.observedMaze, wallDirs["cur"])
try:
self._addWall(adjCell, self.observedMaze, wallDirs["adj"])
except IndexError:
# Wall placement exceeds maze boundary. Do nothing.
pass
# Clear terminal screen.
os.system('cls' if os.name == 'nt' else 'clear')
# Print maze state with non-observed vs. observed walls.
print(self._drawMaze(self.maze, self.mouse, self.destination, self.observedMaze, self.floodFillMatrix if debug else None))
# Terminate solver if the destination is reached.
if self.mouse.getPos() == self.destination:
# Terminate.
print(f"Destination reached! Saving and terminating the solver...")
break
# Apply solver simulation mode.
userInput = None
if sim:
# Wait inversely proportional to volume of the maze.
time.sleep(1/np.prod(self.maze.shape))
else:
# Step Mode: User input progresses the solver.
rawInput = input(f"> Continue progress on MazeSolver? [y/n/wasd]\nAnswer: ")
userInput = "".join(set(x for x in rawInput))
if userInput == "n":
# Terminate.
print(f"Solver state saved. Terminating the solver...")
break
# Solve the (observed) maze via FloodFill.
self.floodfill(xray)
# Update: If userInput is not None and is WASD, then move the mouse in
# that direction if the direction is reachable. Otherwise, do not do
# anything if the userInput was specified but not reachable.
if userInput in self.dirDelta:
# Change mouse direction to user-specified direction.
userDir = self.deltaDir[self.dirDelta[userInput]]["cur"]
self.mouse.setDir(userDir)
if not self._checkWall(self.mouse.getPos(), self.maze, dir=userDir):
# Move in user-specified direction.
self.mouse.setPos(self._applyDelta(self.mouse.getPos(), self.dirDelta[userInput]))
# Continue run loop.
continue
else:
# Do nothing. Continue run loop.
continue
# Compute optimal direction to solve the maze.
minDist = float('inf')
minDelta = set()
for delta, wallDirs in self.deltaDir.items():
# Validate direction.
adjCell = self._applyDelta(self.mouse.getPos(), delta)
if not self._checkMazeBounds(adjCell, self.observedMaze):
# Direction exceeds maze boundary. Skip.
continue
# Identify the shortest path to destination.
adjDist = self._posLookup(self.floodFillMatrix, adjCell)
if not self._checkWall(self.mouse.getPos(), self.observedMaze, wallDirs["cur"]) \
and adjDist <= min(self._posLookup(self.floodFillMatrix, self.mouse.getPos()), minDist):
# Update minimum and direction cell.
minDist = adjDist
minDelta.add(delta)
if not minDelta:
# No viable direction. Terminate.
print(f"Maze is unsolvable! Terminating...")
break
# If multiple directions are viable, prioritize moving in the direction of the destination.
# To sort in order of most aligned to least aligned directions, compute the inner product.
destDelta = self._computeDelta(self.destination, self.mouse.getPos())
bestDelta = sorted(
[(int(np.inner(delta, destDelta)), delta) for delta in self.deltaDir if delta in minDelta],
key=lambda x : x[0],
reverse=True
)[0][1]
# Move mouse. If not facing in direction of movement, change direction.
mvCell = self._applyDelta(self.mouse.getPos(), bestDelta)
if self.mouse.getDir() != self.deltaDir[bestDelta]["cur"]:
# Change direction.
self.mouse.setDir(self.deltaDir[bestDelta]["cur"])
else:
# Move in optimal direction.
self.mouse.setPos(mvCell)
def floodfill(self, xray: bool = False):
"""
Execute the FloodFill algorithm to update all
Manhattan distances in the (observed) maze
to represent the distance to the destination.
"""
# X-Ray: Observe the complete maze instead of a partial maze.
maze = self.observedMaze
if xray:
maze = self.maze
# Instantiate FloodFill parameters.
# Set destination distance to 0.
cellStack = [self.mouse.getPos()]
cellSet = set([self.mouse.getPos()])
self._posSet(self.floodFillMatrix, self.destination, 0)
# FloodFill
prevMin = {}
while cellStack:
# Pop stack.
cell = cellStack.pop()
cellSet.remove(cell)
# Compute minimum adjacent distance.
minDist = float('inf')
for delta, wallDirs in self.deltaDir.items():
# Reachable?
adjCell = self._applyDelta(cell, delta)
if self._checkWall(cell, maze, wallDirs["cur"]) or not self._checkMazeBounds(adjCell, maze):
# Unreachable cell.
continue
# Identify adjacent FloodFill distance.
adjDist = self._posLookup(self.floodFillMatrix, adjCell)
if adjDist < minDist:
# Update minimum distance.
minDist = adjDist
# Set current cell Manhattan distance to minimum distance of adjacent reachable cells + 1.
# Do not update destination cell - the distance from the destination is constant at 0.
if self._posLookup(self.floodFillMatrix, cell) != minDist + 1 and minDist != float('inf'):
# Update.
if cell != self.destination:
self._posSet(self.floodFillMatrix, cell, minDist + 1)
# Termination Criteria - Previous adjacent minimum distance is identical to the current adjacent minimum distance.
# Otherwise, the solution distance gradient needs to be updated in the proximity of the cell via FloodFill.
if minDist == prevMin.get(cell, None):
# Terminate update search starting from cell.
continue
else:
# Save previous adjacent minimum distance at cell.
prevMin[cell] = minDist
# Push adjacent reachable cells into the stack.
for delta, wallDirs in self.deltaDir.items():
adjCell = self._applyDelta(cell, delta)
if all([
adjCell not in cellSet,
not self._checkWall(cell, maze, wallDirs["cur"]),
self._checkMazeBounds(adjCell, maze)
]):
cellStack.append(adjCell)
cellSet.add(adjCell)
@classmethod
def _checkWall(cls, pos: tuple[int, int], maze: np.ndarray, dir: str = "c"):
return bool(maze[pos[0], pos[1]] & cls.bitDirection.get(dir, 15))
@classmethod
def _addWall(cls, pos: tuple[int, int], maze: np.ndarray, dir: str = "o"):
maze[pos[0], pos[1]] |= cls.bitDirection.get(dir, 0)
@classmethod
def _deleteWall(cls, pos: tuple[int, int], maze: np.ndarray, dir: str = "o"):
maze[pos[0], pos[1]] &= ~cls.bitDirection.get(dir, 0)
@staticmethod
def _checkMazeBounds(pos: tuple[int, int], maze: np.ndarray):
# Check if the coordinates of pos are within the bounds of maze.
return pos[0] >= 0 and pos[0] < maze.shape[0] and pos[1] >= 0 and pos[1] < maze.shape[1]
@staticmethod
def _computeDelta(a: tuple[int, int], b: tuple[int, int]):
return tuple(np.subtract(a, b))
@staticmethod
def _applyDelta(pos: tuple[int, int], delta: tuple[int, int]):
return tuple(np.add(pos, delta))
@staticmethod
def _posLookup(matrix: np.ndarray, pos: tuple[int, int]):
return matrix[pos[0], pos[1]]
@staticmethod
def _posSet(matrix: np.ndarray, pos: tuple[int, int], value):
matrix[pos[0], pos[1]] = value
@staticmethod
def _maze_2d_to_2d(pos: tuple[int, int]):
return 2*pos[0]+1, 2*pos[1]+1
@staticmethod
def _drawMaze(maze: np.ndarray, mouse = None, dest: tuple[int, int] = None, observedMaze: np.ndarray = None, floodFill: np.ndarray = None):
"""
Utilizing the input and observed mazes, expand the coordinate
system to (2X-1,2Y-1) to draw the current state of the maze.
Observed and non-observed objects are depicted differently,
e.g. an observed horizontal wall appears as '===' but an
unobserved horizontal wall appears as '---'.
"""
# Maze Parameters
Y, X = maze.shape[0], maze.shape[1]
# Visualize maze as 2-D ndarray of String.
WALL_GAP = " "
CELL_SPACE = " " * 3
graphicMaze = np.full(((2*Y+1), (2*X+1)), '?', dtype="U3")
for y in range(Y):
for x in range(X):
# Map to raw maze coordinates.
j, i = MazeSolver._maze_2d_to_2d((y, x))
"""
Maze Cells
"""
if mouse is not None and mouse.getPos() == (y,x):
# Set mouse.
graphicMaze[j,i] = MazeSolver.MazeObject.MOUSE_ORIENT[mouse.getDir()]
elif dest is not None and dest == (y,x):
# Mark destination on maze.
graphicMaze[j,i] = MazeSolver.MazeObject.DEST
elif floodFill is not None:
# Show FloodFill distances on maze.
graphicMaze[j,i] = f"{floodFill[y,x]:>3}"
else:
# Empty cell.
graphicMaze[j,i] = CELL_SPACE
"""
Maze Walls
"""
if MazeSolver._checkWall((y,x), maze, "u"):
# North Wall
northWall = MazeSolver.MazeObject.H_WALL_OBS if observedMaze is not None and MazeSolver._checkWall((y,x), observedMaze, "u") else MazeSolver.MazeObject.H_WALL
graphicMaze[j-1,i] = northWall
elif graphicMaze[j-1,i]== "?":
graphicMaze[j-1,i] = MazeSolver.MazeObject.H_OPEN
if MazeSolver._checkWall((y,x), maze, "d"):
# South Wall
southWall = MazeSolver.MazeObject.H_WALL_OBS if observedMaze is not None and MazeSolver._checkWall((y,x), observedMaze, "d") else MazeSolver.MazeObject.H_WALL
graphicMaze[j+1,i] = southWall
elif graphicMaze[j+1,i] == "?":
graphicMaze[j+1,i] = MazeSolver.MazeObject.H_OPEN
if MazeSolver._checkWall((y,x), maze, "l"):
# West Wall
westWall = MazeSolver.MazeObject.V_WALL_OBS if observedMaze is not None and MazeSolver._checkWall((y,x), observedMaze, "l") else MazeSolver.MazeObject.V_WALL
graphicMaze[j,i-1] = westWall
elif graphicMaze[j,i-1] == "?":
graphicMaze[j,i-1] = MazeSolver.MazeObject.V_OPEN
if MazeSolver._checkWall((y,x), maze, "r"):
# East Wall
eastWall = MazeSolver.MazeObject.V_WALL_OBS if observedMaze is not None and MazeSolver._checkWall((y,x), observedMaze, "r") else MazeSolver.MazeObject.V_WALL
graphicMaze[j,i+1] = eastWall
elif graphicMaze[j,i+1] == "?":
graphicMaze[j,i+1] = MazeSolver.MazeObject.V_OPEN
# Print maze.
outputMaze = ""
for j in range(2*Y+1):
for i in range(2*X+1):
# Fill in wall gaps.
if j % 2 == 0 and i % 2 == 0:
graphicMaze[j,i] = WALL_GAP
# Append to graphic.
outputMaze += graphicMaze[j,i]
outputMaze += "\n"
return outputMaze
@classmethod
def generateMaze(cls, length: int, width: int, braid: float = 0.0, seed: int = None):
"""
Generate a random bounded maze using Kruskal's Algorithm.
"""
# Initialize maze.
randomMaze = np.full((length, width), 15)
# Randomly grow a set of maze coordinates
# that are connected via destroying walls.
rng = np.random.default_rng(seed)
disjointCells = DisjointEnsemble((j,i) for j in range(length) for i in range(width))
cellCount = 0
while True:
# Unpack a random starting point.
j, i = rng.integers(low=0, high=length), rng.integers(low=0, high=width)
# Randomly choose a neighbor not in the tree of the coordinate and within bounds.
adjCoordinates = [
cls._applyDelta((j,i), delta) for delta in cls.deltaDir
if all([
cls._checkMazeBounds(cls._applyDelta((j,i), delta), randomMaze),
disjointCells.findTreeRoot(cls._applyDelta((j,i), delta)) != disjointCells.findTreeRoot((j,i))
])
]
if not adjCoordinates:
# No candidates for connection. Randomly choose another coordinate.
continue
else:
# Shuffle options for maze expansion.
rng.shuffle(adjCoordinates)
# Connect with adjacent cell.
adjCell = adjCoordinates[0]
# Compute differential.
delta = cls._computeDelta(adjCell, (j,i))
# Destroy both walls.
cls._deleteWall((j, i), randomMaze, cls.deltaDir[delta]["cur"])
cls._deleteWall(adjCell, randomMaze, cls.deltaDir[delta]["adj"])
# Merge their sets.
disjointCells.treeUnion((j,i), adjCell)
# Increment cell counter.
cellCount += 1
# Terminate maze generation when all cells in maze have been merged.
if cellCount == length * width - 1:
# Connected maze. Terminate.
break
# Remove walls to create braids / cycles in the maze.
if braid > 0.0:
for _ in range(int(2 * braid * length * width)):
# Delete walls in a random direction.
randCell = (rng.integers(low=1, high=length-1), rng.integers(low=1, high=width-1))
randDelta = tuple(rng.choice(list(cls.deltaDir)))
randAdjCell = cls._applyDelta(randCell, randDelta)
cls._deleteWall(randCell, randomMaze, cls.deltaDir[randDelta]["cur"])
cls._deleteWall(randAdjCell, randomMaze, cls.deltaDir[randDelta]["adj"])
# Return randomized maze and mouse.
return randomMaze, (rng.integers(low=0, high=length), rng.integers(low=0, high=width))
print(f"Testing MazeSolver...")
# Generate random maze and mouse position.
SEED=None
LENGTH=20
WIDTH=40
BRAID_DENSITY=0.025
inputMaze, mouse = MazeSolver.generateMaze(LENGTH, WIDTH, braid=BRAID_DENSITY, seed=SEED)
# Instantiate MazeSolver.
mazeSolver = MazeSolver(maze=inputMaze, mouse=mouse)
# Path Planning
SIM = True
XRAY = False
DEBUG = False
WAYPOINTS = 20
PATH = [(random.randint(0,LENGTH-1), random.randint(0,WIDTH-1)) for _ in range(WAYPOINTS)] + [(LENGTH//2,WIDTH//2)]
for checkpoint in PATH:
mazeSolver.solve(checkpoint, sim=SIM, xray=XRAY, debug=DEBUG)