-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path2048_ddqn.py
812 lines (603 loc) · 27.4 KB
/
2048_ddqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
import time
import gymnasium as gym
import gym_game2048
from gym_game2048.wrappers import PreprocessForTensor, Normalize2048, RewardConverter, RewardByScore
from gymnasium.wrappers import FlattenObservation, TimeLimit, TransformReward
import torch
import torch.nn as nn
import numpy as np
from torch import optim
import random
import torch.nn.functional as F
import collections
from torch.optim.lr_scheduler import StepLR
import matplotlib.pyplot as plt
import os
import argparse
from distutils.util import strtobool
import pygame
import warnings
warnings.filterwarnings("ignore")
window = None
window_title = "CS 461 - Term Project (Group 12) - 2048 (w/ DDQN)"
window_width = 400
window_height = 600
clock = None
size = 4
# Global variables for rendering
board_size = 0
block_size = 0
block_x_pos = np.zeros(size)
block_y_pos = np.zeros(size)
left_top_board = (0, 0)
block_color = []
game_color = {}
block_font_color = []
block_font_size = []
render_mode = "human"
metadata = {"render_fps": 15} # Modify the frame rate as needed
def render(board, score, best_score, max_tile, episode=0, _2048_count=0, step=0, render_mode="human"):
global window, window_title, window_width, window_height, clock, size, board_size, block_size, block_x_pos, block_y_pos, left_top_board, block_color, game_color, block_font_color, block_font_size, metadata
def _render_block(board, r, c, canvas: pygame.Surface):
number = board[r][c]
pygame.draw.rect(
canvas,
block_color[min(11, number)],
((block_x_pos[c], block_y_pos[r]), (block_size, block_size))
)
# Empty parts do not output a number.
if board[r][c] == 0:
return
# render number
if number < 7:
size = block_font_size[0]
elif number < 10:
size = block_font_size[1]
elif number < 13:
size = block_font_size[2]
elif number < 20:
size = block_font_size[3]
else:
size = block_font_size[2]
font = pygame.font.Font(None, size)
num_str = str(2 ** board[r][c]) if number < 20 else f'2^{number}'
color = block_font_color[0] if number < 3 else block_font_color[1]
text = font.render(num_str, True, color)
text_rect = text.get_rect(center=((block_x_pos[c] + block_size//2, block_y_pos[r] + block_size//2)))
canvas.blit(text, text_rect)
def _render_info(canvas, score, best_score, max_tile, episode, _2048_count):
info_font = pygame.font.Font(None, 35)
score = info_font.render(f'score: {score}', True, (119, 110, 101))
best_score = info_font.render(f'best: {best_score}', True, (119, 110, 101))
max_tile = info_font.render(f'max tile: {max_tile}', True, (119, 110, 101))
episode = info_font.render(f'episode: {episode}', True, (119, 110, 101))
_2048_count = info_font.render(f'2048 count: {_2048_count}', True, (119, 110, 101))
canvas.blit(score, (15, 25))
canvas.blit(best_score, (15, 65))
canvas.blit(max_tile, (15, 105))
canvas.blit(episode, (15, 145))
canvas.blit(_2048_count, (15, 185))
pygame.font.init()
if render_mode == "human" or render_mode == "human_only":
if window is None:
pygame.init()
pygame.display.set_caption(window_title)
# rendering : Size
win_mg = 10
board_size = (window_width - 2 * win_mg)
block_size = int(board_size / (8 * size + 1) * 7)
left_top_board = (win_mg, window_height - win_mg - board_size)
gap = board_size / (1 + 8 * size)
for i in range(size):
block_x_pos[i] = int(left_top_board[0] + (8 * i + 1) * gap)
block_y_pos[i] = int(left_top_board[1] + (8 * i + 1) * gap)
# rendering: Block Color
block_color = [
(205, 193, 180), (238, 228, 218), (237, 224, 200), (242, 177, 121),
(245, 149, 99), (246, 124, 95), (246, 94, 59), (237, 207, 114),
(237, 204, 97), (237, 200, 80), (237, 197, 63), (237, 194, 46)
]
game_color['background'] = pygame.Color("#faf8ef")
game_color['board_background'] = pygame.Color("#bbada0")
block_font_color = [(119, 110, 101), (249, 246, 242)]
# rendering: Block Font Size
block_font_size = [int(block_size * rate) for rate in [0.7, 0.6, 0.5, 0.4]]
if render_mode == "human" or render_mode == "human_only":
pygame.display.init()
# (width, height)
window = pygame.display.set_mode((window_width, window_height))
else:
window = pygame.Surface((window_width, window_height))
if clock is None:
clock = pygame.time.Clock()
canvas = pygame.Surface((window_width, window_height))
canvas.fill(game_color['background'])
pygame.draw.rect(
canvas,
game_color['board_background'],
(left_top_board, (board_size, board_size))
)
for i in range(size):
for j in range(size):
_render_block(board, i, j, canvas)
_render_info(canvas, score, best_score, max_tile, episode, _2048_count)
window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
clock.tick(metadata["render_fps"])
if render_mode == "terminal" or render_mode == "human":
# pretty print the board. 1 -> 2, 2 -> 4, etc.
print("==============================")
print("\n".join(["\t".join([str(2 ** x) if 2 ** x != 1 else '-' for x in row]) for row in board]))
print("==============================")
print(f"Episode: {episode} | Step: {step} | Score: {score} | Max Tile: {max_tile}\n")
def parse_args():
# Most important arguments
parser = argparse.ArgumentParser()
parser.add_argument("--exp-name", type=str, default=os.path.basename(__file__).rstrip(".py") + f"{int(time.time())}",
help="the name of this experiment")
parser.add_argument("--batch-size", type=int, default=512, help="the batch size of the experiment")
parser.add_argument("--num-steps", type=int, default=5000,
help="the number of steps to run in each environment per policy rollout")
parser.add_argument("--linear-size", type=int, default=128,
help="size of linear layers")
parser.add_argument("-lr-decay", "--lr-decay", type=float, default=0.995, help="learning rate decay rate")
parser.add_argument("--lr-step", type=int, default=100, help="learning rate scheduler step size, decrease learning rate by lr-decay every lr-step steps")
parser.add_argument("--num-episodes", type=int, default=1000, help="the number of episodes to run, set to 0 for infinite")
parser.add_argument("--epsilon-start", type=float, default=1.0, help="the starting epsilon value, for epsilon-greedy exploration (i.e., take random actions with probability epsilon)")
parser.add_argument("--epsilon-end", type=float, default=0.01, help="the ending (minimum) epsilon value, for epsilon-greedy exploration (i.e., take random actions with probability epsilon)")
parser.add_argument("--epsilon-decay", type=float, default=0.995, help="epsilon decay rate, decay epsilon-start by epsilon-decay every episode, until epsilon-end is reached")
parser.add_argument("--buffer-size", type=int, default=1e4, help="the replay buffer size of the experiment")
parser.add_argument("--gamma", type=float, default=0.99,
help="the discount factor gamma")
parser.add_argument("--learning-rate", type=float, default=1e-2,
help="the learning rate of the optimizer") # default=2.5e-4
parser.add_argument("--goal", type=int, default=2048,
help="goal")
parser.add_argument("--render-mode", type=str, default="human")
parser.add_argument("--seed", type=int, default=1,
help="seed of the experiment")
parser.add_argument("--torch-deterministic", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, `torch.backends.cudnn.deterministic=False`")
parser.add_argument("--cuda", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, cuda will be enabled by default")
parser.add_argument("--env-id", type=str, default="gym_game2048/Game2048-v0",
help="the id of the environment")
args = parser.parse_args()
return args
def make_env(env_id, window_title, seed, args):
def _thunk():
env = gym.make(env_id, goal=args.goal, render_mode=args.render_mode, window_title = window_title)
#### Add Custom Wrappers ###
# env = TimeLimit(env, max_episode_steps=3000)
# env = RewardConverter(env, goal=6, fail=-5, other=-0.0001)
env = RewardByScore(env, log=False)
# env = TransformReward(env, lambda r: r * 0.1)
# env = Normalize2048(env)
env = FlattenObservation(env)
#############################
env = gym.wrappers.RecordEpisodeStatistics(env)
env.action_space.seed(seed)
return env
return _thunk
class ReplayBuffer:
def __init__(self, buffer_size, batch_size, seed):
self.batch_size = batch_size
self.memory = collections.deque(maxlen=buffer_size)
self.experience = collections.namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def __len__(self):
return len(self.memory)
def add(self, state, action, reward, next_state, done):
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float()
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).long()
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float()
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float()
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float()
return states, actions, rewards, next_states, dones
class QNetwork(nn.Module):
def __init__(self, state_size, action_size, seed, fc1_units=128, fc2_units=128):
super(QNetwork, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
def forward(self, state):
x = F.leaky_relu(self.fc1(state))
x = F.leaky_relu(self.fc2(x))
x = self.fc3(x)
return x
class DDQN:
def __init__(self, state_size, action_size, args, seed = None):
self.state_size = state_size
self.action_size = action_size
self.args = args
self.seed = seed
if seed is None: self.seed = args.seed
self.batch_size = args.batch_size
self.qnetwork_local = QNetwork(state_size, action_size, seed, fc1_units=args.linear_size, fc2_units=args.linear_size).to(device)
self.qnetwork_target = QNetwork(state_size, action_size, seed, fc1_units=args.linear_size, fc2_units=args.linear_size).to(device)
self.transfer_parameters(self.qnetwork_local, self.qnetwork_target)
# Only train the local network
for param in self.qnetwork_target.parameters():
param.requires_grad = False
self.optimizer = optim.Adam(self.qnetwork_local.parameters(), lr=args.learning_rate)
self.scheduler = StepLR(self.optimizer, step_size=args.lr_step, gamma=args.lr_decay)
self.memory = ReplayBuffer(buffer_size=int(args.buffer_size), batch_size=args.batch_size, seed=seed)
self.gamma = args.gamma
self.t_step = 0
def step(self, state, action, reward, next_state, done):
self.memory.add(state, action, reward, next_state, done)
self.t_step = (self.t_step + 1) % self.args.num_steps
if self.t_step == 0:
if len(self.memory) > self.args.batch_size:
experiences = self.memory.sample()
self.learn(experiences, self.args.gamma)
def act(self, state, eps=0.):
state = torch.Tensor(state).to(device)
with torch.no_grad():
values = self.qnetwork_target(state)
if random.random() <= eps:
action = np.random.randint(0, self.action_size)
else:
action = np.argmax(values.cpu().numpy())
return action
def learn(self, experiences, gamma):
states, actions, rewards, next_states, dones = experiences
actions = actions.view(-1, 1) if len(actions.shape) == 1 else actions
Q_locals = self.qnetwork_local(states)
Q_locals_next = self.qnetwork_local(next_states)
Q_targets_next = self.qnetwork_target(next_states)
Q_value = Q_locals.gather(1, actions).squeeze(1)
Q_value_next = Q_targets_next.gather(1, torch.max(Q_locals_next, 1)[1].unsqueeze(1)).squeeze(1)
Q_expected = rewards + gamma * Q_value_next * (1 - dones)
loss = (Q_value - Q_expected.detach()).pow(2).mean()
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
self.transfer_parameters(self.qnetwork_local, self.qnetwork_target)
def transfer_parameters(self, local_model, target_model):
target_model.load_state_dict(local_model.state_dict())
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
def check_tile_achieved(max_tiles: list, tile: int) -> int:
count = 0
for max_tile in max_tiles:
if max_tile >= tile:
count += 1
return count
def train(args):
env = make_env(args.env_id, seed=args.seed, args=args, window_title="CS 461 - Term Project (Group 12) - 2048 (w/ DDQN)")()
rm = args.render_mode
_2048_count = 0
best_score = 0
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
agent = DDQN(state_size, action_size, args, seed=args.seed)
eps = args.epsilon_start
eps_end = args.epsilon_end
eps_decay = args.epsilon_decay
episode_scores = []
episode_max_tiles = []
total_steps = 0
if args.num_episodes == 0:
args.num_episodes = float("inf")
for i_episode in range(1, args.num_episodes+1):
state, info = env.reset(seed=args.seed)
score = 0
step = 0
start_time = time.time()
while True:
action = agent.act(state, eps)
observation, reward, terminated, truncated, info = env.step(action)
step += 1
total_steps += 1
agent.step(state, action, reward, observation, terminated)
state = observation
score += reward
max_ = 2 ** info["max"]
if 2048 in info["score_per_step"]:
_2048_count += 1
render(np.reshape(state, (-1, size)), info["score"], best_score, max_, i_episode, _2048_count, total_steps, render_mode=rm)
if terminated or truncated:
break
eps = max(eps_end, eps_decay*eps)
episode_scores.append(score)
episode_max_tiles.append(max_)
if score > best_score:
best_score = score
# Only for experiments
# def train_new(args):
# env = make_env(args.env_id, seed=args.seed, args=args, window_title="CS 461 - Term Project (Group 12) - 2048 (w/ DDQN)")()
# state_size = env.observation_space.shape[0]
# action_size = env.action_space.n
# agent = DDQN(state_size, action_size, args, seed=args.seed)
# scores = []
# eps = args.epsilon_start
# eps_end = args.epsilon_end
# eps_decay = args.epsilon_decay
# episode_scores = []
# episode_max_tiles = []
# total_steps = 0
# if args.num_episodes == 0:
# args.num_episodes = float("inf")
# for i_episode in range(1, args.num_episodes+1):
# state, info = env.reset(seed=args.seed)
# episode_max_tile_so_far = 0
# score = 0
# while True:
# action = agent.act(state, eps)
# observation, reward, terminated, truncated, info = env.step(action)
# total_steps += 1
# agent.step(state, action, reward, observation, terminated)
# state = observation
# score += reward
# if terminated or truncated:
# break
# eps = max(eps_end, eps_decay*eps)
# score = info["score"]
# max_ = 2 ** info["max"]
# episode_scores.append(score)
# episode_max_tiles.append(max_)
# print('\rEpisode {}, Step {}, Score {}, Max Tile {}'.format(i_episode, total_steps, score, max_))
# return episode_scores, episode_max_tiles
if __name__ == "__main__":
args = parse_args()
if args.torch_deterministic:
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args.seed:
torch.manual_seed(args.seed)
np.random.seed(args.seed)
random.seed(args.seed)
train(args)
# Comment out for the experiments
# Specify different gamma values
# gamma_values = [0.1, 0.5, 0.8]
# gamma_scores_list = []
# gamma_max_tiles_list = []
# for gamma in gamma_values:
# print(f"================== GAMMA: {gamma} ==================")
# args.gamma = gamma
# scores, max_tiles = train_new(args)
# gamma_scores_list.append(scores)
# gamma_max_tiles_list.append(max_tiles)
# # Plot the results first separately
# for i, gamma in enumerate(gamma_values):
# plt.figure(figsize=(10, 5))
# plt.plot(gamma_scores_list[i], label=f'Gamma = {gamma}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_gamma_{gamma}_max_scores.png")
# for i, gamma in enumerate(gamma_values):
# plt.figure(figsize=(10, 5))
# plt.plot(gamma_max_tiles_list[i], label=f'Gamma = {gamma}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_gamma_{gamma}_max_tiles.png")
# # Plot the results together
# # First, max scores
# plt.figure(figsize=(10, 5))
# for i, gamma in enumerate(gamma_values):
# plt.plot(gamma_scores_list[i], label=f'Gamma = {gamma}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_gamma_max_scores.png")
# # Then, max tiles
# plt.figure(figsize=(10, 5))
# for i, gamma in enumerate(gamma_values):
# plt.plot(gamma_max_tiles_list[i], label=f'Gamma = {gamma}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_gamma_max_tiles.png")
# # # Pickle the results
# import pickle
# with open('ddqn_gamma_scores.pkl', 'wb') as f:
# pickle.dump(gamma_scores_list, f)
# with open('ddqn_gamma_max_tiles.pkl', 'wb') as f:
# pickle.dump(gamma_max_tiles_list, f)
# learning_rates = [1e-4, 2.5e-4, 5e-4]
# lr_scores_list = []
# lr_max_tiles_list = []
# for lr in learning_rates:
# print(f"================== LEARNING RATE: {lr} ==================")
# args.learning_rate = lr
# scores, max_tiles = train_new(args)
# lr_scores_list.append(scores)
# lr_max_tiles_list.append(max_tiles)
# Plot the results first separately
# for i, lr in enumerate(learning_rates):
# plt.figure(figsize=(10, 5))
# plt.plot(lr_scores_list[i], label=f'Learning Rate = {lr}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_lr_{lr}_max_scores.png")
# for i, lr in enumerate(learning_rates):
# plt.figure(figsize=(10, 5))
# plt.plot(lr_max_tiles_list[i], label=f'Learning Rate = {lr}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_lr_{lr}_max_tiles.png")
# # Plot the results together
# # First, max scores
# plt.figure(figsize=(10, 5))
# for i, lr in enumerate(learning_rates):
# plt.plot(lr_scores_list[i], label=f'Learning Rate = {lr}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_lr_max_scores.png")
# # Then, max tiles
# plt.figure(figsize=(10, 5))
# for i, lr in enumerate(learning_rates):
# plt.plot(lr_max_tiles_list[i], label=f'Learning Rate = {lr}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_lr_max_tiles.png")
# # Pickle the results
# import pickle
# with open('ddqn_lr_scores.pkl', 'wb') as f:
# pickle.dump(lr_scores_list, f)
# with open('ddqn_lr_max_tiles.pkl', 'wb') as f:
# pickle.dump(lr_max_tiles_list, f)
# buffer_sizes = [1e4, 5e4, 1e5]
# bs_scores_list = []
# bs_max_tiles_list = []
# for bs in buffer_sizes:
# print(f"================== BUFFER SIZE: {bs} ==================")
# args.buffer_size = bs
# scores, max_tiles = train_new(args)
# bs_scores_list.append(scores)
# bs_max_tiles_list.append(max_tiles)
# # Plot the results first separately
# for i, bs in enumerate(buffer_sizes):
# plt.figure(figsize=(10, 5))
# plt.plot(bs_scores_list[i], label=f'Buffer Size = {bs}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_bs_{bs}_scores.png")
# for i, bs in enumerate(buffer_sizes):
# plt.figure(figsize=(10, 5))
# plt.plot(bs_max_tiles_list[i], label=f'Buffer Size = {bs}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_bs_{bs}_max_tiles.png")
# # Plot the results together
# # First, scores
# plt.figure(figsize=(10, 5))
# for i, bs in enumerate(buffer_sizes):
# plt.plot(bs_scores_list[i], label=f'Buffer Size = {bs}')
# plt.title('Scores Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Score')
# plt.legend()
# plt.savefig(f"ddqn_bs_scores.png")
# # Then, max tiles
# plt.figure(figsize=(10, 5))
# for i, bs in enumerate(buffer_sizes):
# plt.plot(bs_max_tiles_list[i], label=f'Buffer Size = {bs}')
# plt.title('Max Tiles Over Episodes')
# plt.xlabel('Episodes')
# plt.ylabel('Max Tile')
# plt.legend()
# plt.savefig(f"ddqn_bs_max_tiles.png")
# # Pickle the results
# import pickle
# with open('ddqn_bs_scores.pkl', 'wb') as f:
# pickle.dump(bs_scores_list, f)
# with open('ddqn_bs_max_tiles.pkl', 'wb') as f:
# pickle.dump(bs_max_tiles_list, f)
# Load the results for learning rate
# import pickle
# in_file = open("ddqn_lr_scores.pkl", "rb")
# lr_scores_list = pickle.load(in_file)
# in_file.close()
# in_file = open("ddqn_lr_max_tiles.pkl", "rb")
# lr_max_tiles_list = pickle.load(in_file)
# in_file.close()
# # Infer from the results
# # Average scores
# lr_scores_means = []
# for scores in lr_scores_list:
# lr_scores_means.append(np.mean(scores))
# # Pretty print the results
# print("Average Scores for Different Learning Rates")
# print("-------------------------------------------")
# for i, lr in enumerate(learning_rates):
# print(f"Learning Rate: {lr}, Average Score: {lr_scores_means[i]}")
# print()
# # Pretty print the results
# print("Tiles Achieved for Different Learning Rates")
# print("-------------------------------------------")
# for i, lr in enumerate(learning_rates):
# # For each learning rate print the number of tiles achieved for each tile
# print(f"Learning Rate: {lr}")
# for t in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]:
# times_accomplished = lr_max_tiles_list[i].count(t)
# if times_accomplished > 0:
# print(f"\tTile {t} achieved {times_accomplished} times ({round(times_accomplished / len(lr_max_tiles_list[i]) * 100, 2)}%)")
# print()
# # Do the same for gamma
# # Load the results for learning rate
# import pickle
# in_file = open("ddqn_gamma_scores.pkl", "rb")
# gamma_scores_list = pickle.load(in_file)
# in_file.close()
# in_file = open("ddqn_gamma_max_tiles.pkl", "rb")
# gamma_max_tiles_list = pickle.load(in_file)
# in_file.close()
# # Infer from the results
# # Average scores
# gamma_scores_means = []
# for scores in gamma_scores_list:
# gamma_scores_means.append(np.mean(scores))
# # Pretty print the results
# print("Average Scores for Different Gamma Values")
# print("-------------------------------------------")
# for i, gamma in enumerate(gamma_values):
# print(f"Gamma: {gamma}, Average Score: {gamma_scores_means[i]}")
# print()
# # Pretty print the results
# print("Tiles Achieved for Different Gamma Values")
# print("-------------------------------------------")
# for i, gamma in enumerate(gamma_values):
# # For each learning rate print the number of tiles achieved for each tile
# print(f"Gamma: {gamma}")
# for t in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]:
# times_accomplished = gamma_max_tiles_list[i].count(t)
# if times_accomplished > 0:
# print(f"\tTile {t} achieved {times_accomplished} times ({round(times_accomplished / len(gamma_max_tiles_list[i]) * 100, 2)}%)")
# print()
# # Do the same for buffer size
# # Load the results for learning rate
# import pickle
# in_file = open("ddqn_bs_scores.pkl", "rb")
# bs_scores_list = pickle.load(in_file)
# in_file.close()
# in_file = open("ddqn_bs_max_tiles.pkl", "rb")
# bs_max_tiles_list = pickle.load(in_file)
# in_file.close()
# # Infer from the results
# # Average scores
# bs_scores_means = []
# for scores in bs_scores_list:
# bs_scores_means.append(np.mean(scores))
# # Pretty print the results
# print("Average Scores for Different Buffer Sizes")
# print("-------------------------------------------")
# for i, bs in enumerate(buffer_sizes):
# print(f"Buffer Size: {int(bs)}, Average Score: {bs_scores_means[i]}")
# print()
# # Pretty print the results
# print("Tiles Achieved for Different Buffer Sizes")
# print("-------------------------------------------")
# for i, bs in enumerate(buffer_sizes):
# # For each learning rate print the number of tiles achieved for each tile
# print(f"Buffer Size: {int(bs)}")
# for t in [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048]:
# times_accomplished = bs_max_tiles_list[i].count(t)
# if times_accomplished > 0:
# print(f"\tTile {t} achieved {times_accomplished} times ({round(times_accomplished / len(bs_max_tiles_list[i]) * 100, 2)}%)")
# print()